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Zusammenfassung

Ziel dieser Arbeit ist, das p-adische Analogon des komplexen Wegintegrals zu untersu-
chen. Dabei werden zwei verschiedene Ansätze, das abelsche Integral und das Berkovich-
Coleman-Integral, eingeführt und anschließend verglichen. Weil das abelsche Integral
jedoch nur auf Kurven definiert ist, wird sich in dieser Arbeit auch auf diese beschränkt.

p-adische Zahlen haben im Gegensatz zu den reellen oder komplexen Zahlen die beson-
dere Eigenschaft, dass sie eine total unzusammenhängende Topologie besitzen, das heißt
die einzigen zusammenhängenden Teilmengen sind die leere Menge und Mengen, die nur
aus einem Element bestehen. Das macht es so schwer, einen Weg auf einer p-adischen
Kurve zu definieren, da die bisherige Definition eines Wegs im archimedischen Fall nicht
angewendet werden kann. Weiterhin ergibt sich auf einer p-adischen Kurve, die in den
eindimensionalen affinen Raum eingebettet werden kann, das Problem, dass zwei offene
Bälle entweder disjunkt sind oder einer den anderen enthält. Das heißt der Weg von
einem Punkt P zu einem anderen Punkt Q kann entweder durch einen einzelnen offenen
Ball überdeckt werden oder es ist gänzlich unmöglich, ihn mit offenen Bällen zu überde-
cken. Offene Bälle haben die besondere Eigenschaft, dass auf ihnen das Poincaré-Lemma
angewendet werden kann. Dieses besagt, dass für eine geschlossene Differentialform ω
eine Stammfunktion F existiert. Im ersten Fall kann man das Integral also ganz einfach
als ∫ Q

P
ω =

∫ Q

P
dF = F (Q)− F (P )

berechnen, wofür man noch nicht einmal einen Weg von P nach Q braucht. Das gilt auch
tatsächlich für alle p-adischen Integrationstheorien. Im zweiten Fall kann man keine
Stammfunktionen von ω auf dem ganzen Weg von P nach Q bilden, sofern man es
überhaupt schafft, einen Weg zu definieren.

Man beginnt zunächst allgemein zu definieren, was eine p-adische Integrationstheorie sein
soll, indem man die wichtigsten Eigenschaften des komplexen Wegintegrals nimmt und
diese auch für den p-adischen Fall fordert. Nun könnten rein theoretisch unendlich viele
verschiedene p-adische Integrationstheorien existieren, die diese Anforderungen erfüllen.
Bis heute existieren davon allerdings erst zwei: das abelsche Integral und das Berkovich-
Coleman-Integral.

Ersteres löst die beiden genannten Probleme, indem es gänzlich auf Wege verzichtet
und, statt mit der Kurve selbst, mit seiner Jacobischen J arbeitet. Man bildet also die
Cp-rationalen Punkte P und Q mit Hilfe der Abel-Jacobi-Abbildung ι bezüglich eines
beliebigen Basispunkts auf J ab. Die Jacobische hat nun die besondere Eigenschaft,
dass sie eine abelsche Varietät ist. Auf deren Cp-rationalen Punkten lässt sich nun ein
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ZUSAMMENFASSUNG

universeller Logarithmus

logJ : J(Cp) −→ Lie(J)

definieren. Dieser ist auf ganz J(Cp) definiert und eindeutig. Er lässt sich aber nur
mit Hilfe p-adischer Lie-Theorie definieren, welche sich anwenden lässt, weil J(Cp) eine
p-adische Lie-Gruppe ist. Eine Lie-Gruppe ist eine Mannigfaltigkeit mit einer Gruppen-
struktur. Lie(J) ist die zu J(Cp) gehörige Lie-Algebra, deren zugrundeliegende Menge
der Tangentialraum von J(Cp) in 0 ist. Diese kann schließlich mit der zu Ω1

J/Cp , dem
Raum der Differentialformen vom Grad 1, dualen Gruppe identifiziert werden. Das heißt
es ist möglich, logJ(P ) und logJ(Q) als Homomorphismen von Ω1

J/Cp nach Cp zu be-

trachten. Damit wird das abelsche Integral auf J(Cp) als

Ab

∫ Q

P
ω = (logJ(Q))(ω)− (logJ(P ))(ω)

definiert. Mittels Rücktransport kann das Integral schließlich auf die Kurve zurückgezo-
gen werden, da ι∗ ein Isomorphismus zwischen dem Raum der Differentialformen vom
Grad 1 von J und der Kurve ist. Da alle Differentialformen auf J zudem translations-
invariant sind, ist diese Definition sogar unabhängig von der Wahl des Basispunkts von
ι.

Der zweite Ansatz, das Berkovich-Coleman-Integral, verfolgt eine ganz andere Herange-
hensweise. So wird hier nicht die Kurve X selbst, sondern seine Analytifizierung Xan

betrachtet. Dies macht es möglich, Wege zwischen Cp-rationalen Punkten P und Q zu
definieren, da die Analytifizierung eine Verbindung zwischen den einzelnen Zusammen-
hangskomponenten, die alle nur aus einem Punkt bestehen, herstellt. Den Grundstein
dieser Theorie legte Robert F. Coleman in den 1980er Jahren, der damals noch die
Sprache der rigiden Analysis benutzte. Erst später wurde diese durch die Theorie der
Berkovich-Räume abgelöst. Vladimir G. Berkovich war es auch, der die Theorie von
Coleman für Cp-analytische Räume verallgemeinerte, sodass man nicht mehr nur auf
Kurven beschränkt ist. In dieser Arbeit werden jedoch auch die Resultate von Coleman
in der Sprache von Berkovich formuliert.

Man kann mit Hilfe eines sogenannten Modells X die Analytifizierung der Kurve X
in drei verschiedene Arten von disjunkten Teilmengen unterteilen, deren Vereinigung
wiederum Xan ergibt. Diese sind offene Bälle, offene Kreisringe oder Knoten, das heißt
einelementige Mengen. Die einelementigen Mengen bestehen aus nichtrationalen Punk-
ten, die als Endpunkte nicht in Frage kommen. Auf offenen Bällen ist die Integration
dank des Poincaré-Lemmas unproblematisch. Auf offenen Kreisringen sind die Differen-
tialformen vom Grad 1 durch konvergente Laurentreihen aus Cp[[T, T−1]] gegeben. Diese
kann man auch integrieren, jedoch nur, falls der Koeffizient von 1

T dT gleich 0 ist. Zuerst
wurde dieses Problem gelöst, indem man einen p-adischen Logarithmus konstruierte, der
eine Stammfunktion von 1

T dT darstellte. Dieser hat jedoch, genau wie der komplexe
Logarithmus, unendlich viele Zweige. Ein Zweig ist durch den Wert von Log(p) ∈ Cp
definiert. Coleman fixierte hierfür einen Wert und beließ diesen während des gesamten

6



Integrationsprozesses gleich. Die Wahl des Zweiges ist nicht entscheidend, es ist nur wich-
tig, dass man diesen nicht ändert. Damit kann man auch auf den offenen Kreisringen
integrieren.
Man will jedoch auch zwischen Punkten aus verschiedenen offenen Bällen oder Kreisrin-
gen integrieren können. Dazu muss man die Knoten passieren, die Bindeglieder zwischen
den offenen Bällen und Kreisringen darstellen. Dieses Problem konnte von Coleman
gelöst werden. Man betrachtet einen einzelnen Knoten und definiert sich diesen und alle
angrenzenden offenen Bälle und Kreisringe als ein weites offenes Teilgebiet dieses Kno-
tens, welches einfach-zusammenhängend ist, das heißt alle Wege zwischen P und Q sind
homotopieäquivalent. Man kann nun für P beziehungsweise Q eine Stammfunktion F1

beziehungsweise F2 auf dem zugehörigen offenen Ball oder Kreisring finden. Das Problem
dabei ist, dass die Definition

BC

∫ Q

P
ω = F2(Q)− F1(P )

nicht wohldefiniert ist, da die Stammfunktionen nur bis auf eine Konstante definiert
sind, die sich hier nicht aufhebt, da es sich um zwei verschiedene Stammfunktionen
handelt. Coleman schaffte es schließlich, diese Konstante mit Hilfe von logarithmischen
F -Kristallen in den Griff zu bekommen, sodass nun mit obiger Definition sinnvoll gear-
beitet werden kann.
Die Arbeit von Coleman wurde später von Vladimir G. Berkovich auf Cp-analytische
Räume verallgemeinert. Aufgrund der Komplexität dieser Theorie beschränkt sich diese
Arbeit aber darauf, die wichtigsten Unterschiede und Gemeinsamkeiten zu Colemans
Definition aufzuzeigen.
Im letzten Kapitel wird schließlich untersucht, ob und wann beide Integrale überein-
stimmen. Als Grundlage hierfür dient ein Theorem, das besagt, dass sich die Differenz
beider Integrale als Verknüpfung einer linearen Abbildung L und der Tropikalisierungs-
abbildung trop darstellen lässt. Als unmittelbare Konsequenz daraus ergibt sich die
Übereinstimmung beider Integrale auf abelschen Varietäten guter Reduktion sowie auf
offenen Bällen in Xan. Das Hauptresultat dieser Arbeit beschreibt schließlich den Ver-
gleich auf offenen Kreisringen. Es besagt, dass eine Cp-lineare Abbildung

a : Ω1
X/Cp −→ Cp

existiert, sodass sich für die Differenz der Ausdruck

BC

∫ Q

P
ω − Ab

∫ Q

P
ω = a(ω) (v(Q)− v(P )) .

ergibt, wobei v die p-adische Bewertung ist. Diese kann im offenen Kreisring angewendet
werden, da hier P und Q isomorph zu p-adischen Zahlen sind. Für n := dimCp(Ω

1
X/Cp) >

1 ergibt sich damit ein mindestens (n − 1)-dimensionaler Unterraum von Ω1
X/Cp , auf

dem beide Integrale übereinstimmen. Daraus ergeben sich wichtige Resultate für die
Beschränkung der Q-rationalen Punkte auf Kurven von kleinem Mordell-Weil-Rang (vgl.
Theorem 9.1, [Sto13] und Theorem 2.14, [KRZ16a]).
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1 Introduction

1.1 The history of p-adic numbers

Figure 1.1: Kurt Hensel (1861-1941)
Source: http://www.learn-math.info/historyDetail.htm?id=Hensel (visited on Oct. 18, 2017)

p-adic numbers were developed by Kurt Hensel towards the end of the 19th century. He
started defining the p-adic absolute value

|.|p : Q −→ Q

with respect to a prime number p ∈ N in the following way. Every rational number q 6= 0
has a unique representation

q = ±a
bp
n

with n ∈ Z, a, b ∈ N\{0}, p - a, b and a, b coprime. Then he defined

|q|p := p−n and |0|p = 0.

For 3.6 = 18
5 = 2·32

5 , one gets
∣∣18

5

∣∣
2

= 1
2 ,
∣∣18

5

∣∣
3

= 1
9 ,
∣∣18

5

∣∣
5

= 5 and
∣∣18

5

∣∣
p

= 1 for all other
p prime. This is a non-archimedean absolute value, which means that the ultrametric
triangle inequality

|x+ y|p ≤ max(|x|p, |y|p)

9
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CHAPTER 1. INTRODUCTION

holds for x, y ∈ Q. In contrast to this, the more popular absolute value |.|∞, which just
eliminates the minus-sign, is an archimedean absolute value, as

|1 + 2|∞ = 3 > max(|1|∞, |2|∞)

and thus the ultrametric triangle inequality does not hold.

Ostrowski’s theorem says that |.|∞ and |.|p for p prime are, up to equivalence, the only
absolute values on Q. Since every absolute value on Q yields a metric on Q, one can
complete Q with respect to the absolute values |.|∞ and |.|p. It is established that the
completion of Q with respect to |.|∞ is R, the set of real numbers, where new numbers,
such as

√
2 /∈ Q, arise. Doing the completion of Q with respect to |.|p, one obtains a new

field, denoted by Qp. The numbers that arise by this completion can be represented by
convergent power series of the form

∞∑
i=i0

aip
i

with i0 ∈ Z and ai ∈ {1, ..., p − 1}. If it holds ai = 0 for all i > n for a certain n ∈ Z,
then the element is in Q. With respect to the archimedean absolute value |.|∞, these
new numbers would be “∞” because the power series would not converge in R.

If one takes the algebraic closure of R respectively Qp and completes this afterwards,
one obtains the fields C respectively Cp.

Q

completion R Qp

algebraic closure C Qp

completion C Cp

|.|∞ |.|p

|.|∞ |.|p

|.|∞ |.|p

Therefore Cp may be considered as the p-adic analogue of the complex numbers.

The p-adic numbers Qp became a powerful tool in solving diophantic equations, which
have already been a point of interest in number theory for many centuries. By the local-
global principle of Hasse and Minkowski for example, a quadratic form over a number
field can be solved in Q if and only if it can be solved in R and all Qp. The importance
of p-adic numbers may be underlined by the fact that totally new areas of research in
non-archimedean geometry have arisen since then, for instance Berkovich theory in the
1980s.

Investigating the topology of p-adic numbers, a couple of odd properties arise: On the
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1.2. PATH INTEGRAL ON A CURVE OVER P -ADIC NUMBERS

following number line R, two open balls of radius 3 around 0 and 5 are drawn:

−3 −2 −1 0 1 2 3 4 5 6 7 8

ball around 0 ball around 5

The intersection of both balls is exactly the open interval (2, 3). This holds because for
the numbers x ∈ (2, 3) we have |0− x|∞ < 3 and |5− x|∞ < 3.
With respect to the p-adic absolute value |.|p, this phenonemon is not possible anymore.
If one takes p = 5 and the numbers 0 and 1

5 , then the two numbers have distance
|15 − 0|5 = 5. Considering now two open balls with radius 2.5 < r ≤ 5 around them,
they do not intersect anymore. On the assumption that such an element x ∈ Q exists,
it would have to fulfil |x − 0|5 < 5 and |x − 1

5 |5 < 5. This contradicts the ultrametric
triangle inequality

5 = |15 − 0|5 ≤ max(|15 − x|5, |x− 0|5) < 5.

Taking now r > 5, a new phenomenon arises. An element that lies in one of the open
balls, meaning |x−0|5 < r, lies also in the other open ball, since the ultrametric triangle
inequality delivers

|x− 1
5 |5 ≤ max(|x− 0|5, |0− 1

5 |5) < r.

Hence, both balls coincide. If the two open balls had different radii r1 > r2 > 5, the
bigger ball would contain the smaller one. That means that in the p-adic topology of
the affine line, two open balls are either disjoint or one ball contains the other one.

Figure 1.2: The left situation is not possible in p-adic topology

1.2 Path integral on a curve over p-adic numbers

This phenomenon leads to a big problem when trying to construct a path integral on a
curve in the p-adic world. The goal is to have an analogue to the complex path integral.
Given a smooth, proper, connected Cp-curve X, the aim is to have a map∫

: P(X)× Ω1
X/Cp −→ Cp

(γ, ω) 7−→
∫
γ
ω

11



CHAPTER 1. INTRODUCTION

where P(X) is the set of all paths in X with Cp-rational end points and Ω1
X/Cp the set

of all differential one-forms on X.
The first problem is the definition of P(X). Normally a path γ is a continuous map from
a closed interval to X. But Qp is not ordered; hence defining a closed interval [a, b], with
a, b ∈ Qp, does not make sense. Another way would be taking the closed interval in R.
But the p-adic topology is totally disconnected, which means that the only connected
subsets of X are the singletons and the empty set. Since the image of a connected subset
such as [a, b], with a, b ∈ R, under a continuous map is again connected, the images of
such paths can only be singletons, which just correspond to the trivial cases and gives
only zero integrals.
The second problem is the application of the Poincaré lemma. It says in particular
that, on an open ball, any closed differential one form (dω = 0) is exact, meaning that
there exists an analytic function f , such that ω = df . Given a differential one-form
ω ∈ Ω1

X/Cp , one can, in the archimedean case, cover the image of the path by open balls

around every point of γ([a, b]). Since [a, b] is compact and γ is continuous, γ([a, b]) is
also compact. Therefore one may choose just a finite number of these open balls, such
that they still cover the path.

Figure 1.3: Covering the path with finitely many open balls

One may now choose points in the intersections, divide the path by these points, and
calculate the integral for the divided paths on the open balls with the Poincaré lemma,
which provides an analytic function f with ω = df , and hence∫ Q

P
ω =

∫ Q

P
df = f(Q)− f(P ).

In p-adic topology this is not possible in general. For instance in the one-dimensional
affine space A1

Cp two open balls are either disjoint or one open ball contains the other

12



1.2. PATH INTEGRAL ON A CURVE OVER P -ADIC NUMBERS

one. This means that the path can either be covered by a single open ball, or it is not
possible to cover it by open balls at all. The first case would be very easy but the second
case leads to a very big problem. If the curve cannot be embedded in A1

Cp , there may
be a possibility to cover the path by open balls, but in contrast to the archimedean case
this property does not hold in general. Therefore the goal is to find a way to evade these
problems.
One approach doing this was the abelian integral, which was treated by Yuri G. Zarhin
in great generality in his paper p-adic abelian integrals and commutative Lie Groups,
[Zar96], and was generalized by Pierre Colmez. It is possible to avoid these problems by
passing to the Jacobian of the curve, which is an abelian variety, and define the integral
for abelian varieties. On an abelian variety A, p-adic Lie theory was used in order to
define a logarithm on A(Cp), which is a p-adic Lie group. Normally the logarithm is
just defined on a small open subset of A(Cp), denoted by A(Cp)f . These are all points
x ∈ A(Cp), for which there exists a sequence (ni)i∈N of non-zero natural numbers, such
that

nix −−−−→
i→+∞

0.

For these points it is now possible to uniquely define a logarithm because the logarithm
map in a small neighbourhood U of 0 is defined as the inverse of the exponential mapping.
In contrast to the archimedean case, here an exponential mapping is not always unique,
but very surprisingly the logarithm defined in this way is unique in U . For points
x ∈ A(Cp)f it is now possible to define log(x) by taking the above limit to 0, where the
logarithm is well-defined. This gives an abelian logarithm

logAb : A(Cp)f −→ Lie(A)

to the Cp-Lie algebra of A(Cp). Abelian varieties have the nice property that for them

A(Cp) = A(Cp)f

always holds, which yields a unique and universally well-defined abelian logarithm

logAb : A(Cp) −→ Lie(A).

Finally, every image log(P ) of Cp-rational points under this logarithm is a homomor-
phism from Ω1

A/Cp to Cp. The abelian integral is then defined as

Ab

∫ Q

P
ω = log(Q)(ω)− log(P )(ω)

and one can produce the integral on the curve by pullback. This version totally ignores
the paths and just uses the end points.
Another approach was started by Robert F. Coleman in the 1980s. He used the Frobenius
homomorphism to continue the integration from open balls to the whole curve. For this
purpose he used the language of rigid analysis, which, meanwhile, is already out of date.

13
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A more modern language was developed by Vladimir G. Berkovich and published in his
book Spectral Theory and Analytic Geometry over Non-Archimedean Fields [Ber90] in
1990. Berkovich started by taking the idea of Coleman, translating it into Berkovich
language and generalizing it. Since Berkovich theory is more modern, the ideas of
Coleman will also be described in this language.

Coleman tackled the problem that, on the curve X, it is not possible to define paths
P(X) with Cp-rational end points. The p-adic topology is totally disconnected, meaning
that one may imagine the p-adic numbers as a cloud of single points without order. The
same holds for the curve X. But with Berkovich theory there is a way to connect these
points. For this purpose one has to identify every element a ∈ Cp with a map

ζa,0 : Cp[x] −→ Cp,
f(x) 7−→ f(a).

Furthermore the following maps were defined

ζa,r : Cp[x] −→ Cp,
f(x) 7−→ sup

|y−a|p≤r
|f(y)|p

for r ∈ R>0, which are multiplicative seminorms on Cp[x], continuing the p-adic absolute
value. Taking two numbers, for example 0 and 1

5 from the example in section 1.1, the
open balls around them are disjoint for radius r ≤

∣∣1
5 − 0

∣∣
5

= 5 and coincide for r > 5.
For closed balls they already coincide for r = 5. Hence ζ0,5 = ζ1

5 ,5
and ζ0,r 6= ζ1

5 ,r
for

r < 5. Extending C5 by the elements ζa,r, it is possible to find paths

γ1 : [0, 5] −→ {multiplicative seminorm on C5[x] continuing |.|5}
r 7−→ ζ0,r

and

γ2 : [0, 5] −→ {multiplicative seminorm on C5[x] continuing |.|5}
r 7−→ ζ1

5 ,r

from 0 respectively 1
5 to ζ0,5 = ζ1

5 ,5
. The map

γ : [0, 10] −→ {multiplicative seminorm on C5[x] continuing |.|5}

r 7−→

ζ0,r for r ≤ 5

ζ1
5 ,10−r

for r > 5.

finally builds a path from 0 to 1
5 .

14



1.2. PATH INTEGRAL ON A CURVE OVER P -ADIC NUMBERS

0 1
5

1
25

ζ0,5

ζ0,25

Figure 1.4: Connecting 0, 1
5 and 1

25 via elements ζa,r

The distance between 1
25 and 0 is

∣∣ 1
25 − 0

∣∣
5

= 25. Adding this to the picture, it would

mean that
∣∣ 1

25 −
1
5

∣∣
5

= 25, too. And this is indeed true as, with the ultrametric triangle
inequality, it follows that

∣∣ 1
25 −

1
5

∣∣
5
≤ max

(∣∣ 1
25 − 0

∣∣
5
,
∣∣0− 1

5

∣∣
5

)
= max (25, 5) = 25.

Since 25 6= 5, equality is achieved in the ultrametric triangle inequality, and the picture
still makes sense. By this process, called analytification, one may transform the open
unit ball {x ∈ Cp||x|p < 1} or the open annulus {x ∈ Cp|ρ < |x|p < 1} for ρ ∈ Q and
0 < ρ < 1 into their analytification B(1)+ and S(ρ)+, which look like trees.

{x ∈ Cp||x|p < 1}

0

Figure 1.5: Sketch of B(1)+; the Cp-rational points are marked in red
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{x ∈ Cp|ρ < |x|p < 1}

Figure 1.6: Sketch of S(ρ)+; the Cp-rational points are marked in green

Only the trees in black build the analytifications. These are now path-connected. In
Figure 1.5, the line from the top to the point 0 may be associated with length 1 as this
is the radius of the open ball. In Figure 1.6, this line gets cut as the open ball with
radius ρ was removed. The remaining length is only 1 − ρ > 0. This line will play an
important role later as its end points are missing.

red

model X

special fibreanalytification of

the generic fibre

XkXan

Figure 1.7: Interplay of the model X and the curve X

A proper, connected, flat R-scheme X of relative dimension 1 is called a semistable
model ofX if its generic fibre is equal to the smooth curve X and the only singularities of
its special fibre Xk are double points. By a result of Berkovich and Bosch-Lütkebohmert
(Theorem 3.2.4, [KRZ16a]), there exists a reduction map from the analytification Xan of
the curve X to Xk such that the pre-image of a generic point is a singleton, the pre-image
of a smooth point is B(1)+, and the pre-image of a double point is S(ρ)+.
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The Cp-rational points of X correspond to the end points of the trees in the analytifi-
cation Xan where it is possible to consider paths as it is path-connected. The coloured
vertices are the pre-images of the generic points of the corresponding irreducible com-
ponents.

Figure 1.8: Analytification of X

For example, the green set is the pre-image of an intersection point of the blue and red
irreducible component; hence it is located between the blue and red vertices. Further-
more it is isomorphic to the open annulus S(ρ)+ for a certain ρ > 0. The same holds
for the orange set, which comes from an intersection of the brown and red component.
The turquoise respectively pink set is the pre-image of a smooth point on the blue re-
spectively brown component and is isomorphic to B(1)+. This is the setting in which
will be worked.

After solving the problem with paths, Coleman also tackled the second one. So far it
was possible only to integrate within an open ball, for instance the pink set. By defining
a logarithm on an open annulus around 0, and fixing the branch of the logarithm, one
can also integrate the differential one-form dz

z and therefore Laurent series on the open
annuli. But, even with this, it is still not possible to integrate between different open
balls or annuli.

For this reason, Coleman extended the integration to basic wide open subdomains. A
basic wide open subdomain is the union of a vertex and all the open balls and open
annuli adjacent to it. Let P and Q be two Cp-rational points lying in two different
open balls or annuli in a basic wide open subdomain. For ω ∈ Ω1

X/Cp it holds ω = dF1

respectively ω = dF2 on the open ball or annulus of P respectively Q because on open
balls and annuli it has been shown that antiderivatives always exist. Before the idea of
Coleman, the integral

BC

∫ Q

P
ω = F2(Q)− F1(P )

17
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was not well-defined, as both F1 and F2 are just defined up to a constant and, therefore,
their difference is not fixed.
But Coleman was able to fix the difference between F1 and F2 in the following way: By
using the Frobenius homomorphism, he constructed for any basic wide open subdomain
a so-called logarithmic F -crystal, which is a module of naive analytic functions. Naive
analytic functions are the Berkovich analogue of locally analytic functions. Any differen-
tial one-form restricted to a basic wide open subdomain has then an antiderivative in the
logarithmic F -crystal belonging to this basic wide open subdomain. This antiderivative
is finally used for calculating the integral on a basic wide open subdomain.

Figure 1.9: Basic wide open subdomain of the red vertex

As a final step, one can cover Xan by basic wide open subdomains and gets an integra-
tion theory between two Cp-rational points, called the Berkovich-Coleman integral and
denoted by BC

∫
γ ω.

Having two integration theories, it is now of interest whether they coincide or deliver in
some cases different results. At first, on open balls the integration theories coincide by
the Poincaré lemma. But on the whole Xan it was not possible to compare them, until
Michael Stoll proved in his paper Uniform bounds for the number of rational points on
hyperelliptic curves of small Mordell-Weil rank (Proposition 7.3, [Sto13]) the following
theorem:

Theorem 6.3.6. Let A be an open annulus in Xan. Then there exists a Cp-linear
map

a : Ω1
X/Cp −→ Cp

such that, for all P,Q ∈ A(Cp), it holds

BC

∫ Q

P
ω − Ab

∫ Q

P
ω = a(ω) (v(Q)− v(P )) .

18
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Firstly it is unclear what v(P ) respectively v(Q) means. In Figure 1.6 the vertical line
in the middle had length 1− ρ. The map

ζ0,r 7−→ r

associates it to the interval (ρ, 1). For the cross points ζa,r, it always holds r = pq with
q ∈ Q. Every Cp-rational point may be mapped to a unique point on this line by going
to the top along the branches in the tree. After this, the line may be mapped with the
negative of the logarithm, that is an isomorphism on (ρ, 1), to the interval (0,− logp(ρ)).
Finally, the image under this isomorphism delivers the value of v(P ) respectively v(Q),
that is in Q since − logp(r) = − logp(p

q) = q for every cross point ζa,r.

Another question is: Why it is possible to write BC
∫ Q
P ω although one needs a path

γ ∈ P(X)? Restriction to one open annulus, which is simply-connected as there are no
loops, makes the integral path-independent because all paths are homotopy equivalent.

The result says now that the difference of the integrals, if they do not coincide, is bigger
if for instance in the green open annulus the point P lies near the blue vertex and Q
lies near the red one. On top of that, the difference can be changed if, for example, one
multiplies ω with a constant. It helps to control the difference between the integrals.
Especially dimCp(Ω

1
X/Cp) > 1 delivers a whole subspace of differential one-forms for

which the integrals coincide. Why is this helpful?

The abelian and Berkovich-Coleman integral have various advantages and disadvantages,
summed up in this graphic:

Abelian integral Berkovich-Coleman integral

⊕ path-independent 	 path-dependent
⊕ [Q] − [P ] torsion point of J(Cp)
=⇒ Ab

∫ Q
P ω = 0

⊕ better functorial properties

	 hard to compute ⊕ can be computed via primitives
on open annuli

In particular the second property of the abelian integral is very interesting. It is a
useful tool in the Chabauty-Coleman method, which is an effective method for bounding
the number of rational points on a curve of genus g ≥ 2 of small Mordell-Weil rank
rankZ(J(Q)) < g. Mostly it suffices to compute the integral for points P,Q lying in the
same open ball isomorphic to B(1)+, where it is possible to apply the Poincaré lemma.

But sometimes one wants to calculate the integral for points that are not contained in the
same open ball. Then it is almost impossible to calculate the abelian integral Ab

∫ Q
P ω.

For the Berkovich-Coleman integral, on the contrary, computation is much easier. It
cannot only be computed on open balls but also on open annuli isomorphic to S(ρ)+,
with ρ ∈ |C×p |. This creates much more possibilities. Even for two points not lying in the
same open annulus there exists an algorithm of Balakrishnan, Bradshaw and Kedlaya
(Explicit Coleman Integration for Hyperelliptic Curves, [BBK10]), which can be applied
to hyperelliptic curves. To sum up, the computation of the Berkovich-Coleman integral
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is in general not easy, but by far easier than computing the abelian integral if the points
do not lie within the same open ball.
If one manages now two prove that both integrals coincide or that there is at least a rule
how they differ, it would be possible to use the advantages of both integrals, especially
the property

[Q]− [P ] torsion point of J(Cp) =⇒ Ab

∫ Q

P
ω = 0

of the abelian integral and the computation of the Berkovich-Coleman integral on open
annuli. Michael Stoll proved exactly this. For dimCp(Ω

1
X/Cp) > 1, there exist differential

one-forms ω ∈ Ω1
X/Cp such that

Ab

∫ Q

P
ω = BC

∫ Q

P
ω

on open annuli. Then, one could compute the Berkovich-Coleman integral and would
simultaneously receive the abelian integral which can be used for the Chabauty-Coleman
method.
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2 Basics

2.1 Berkovich analytic spaces

Let K be a field that is algebraically closed and complete with respect to a nontrivial,
non-archimedean valuation val : K −→ R ∪ {∞}.
Definition 2.1.1. Let X be a topological Hausdorff space. A quasi-net on X is a
family τ of compact subsets V ⊆ X such that each x ∈ X is contained in a closed
neighbourhood of the form V1 ∪ ... ∪ Vn, with Vi ∈ τ and x ∈ V1 ∩ ... ∩ Vn.
A net is a quasi-net τ such that for all V, V ′ ∈ τ the family {W ∈ τ : W ⊆ V ∩ V ′} is a
quasi-net on V ∩ V ′.
Example 2.1.2. (i) R2 is a topological Hausdorff space. The family

τ =
{

[i, i+ 1]× [j, j + 1] ⊆ R2 : i, j ∈ Z
}

is a quasi-net on R2 because R2 is covered by these compact squares. But it is not a
net, as e.g. for the intersection ([0, 1]×[0, 1])∩([1, 2]×[0, 1]) = {1}×[0, 1], the family
{W ∈ τ : W ⊆ {1} × [0, 1]} is empty and hence not a quasi-net on {1} × [0, 1].

(ii) The family

τ =
{

[i, i+ 1]× [j, j + 1] ⊆ R2 : i, j ∈ Z
}

∪
{
{i} × [j, j + 1] ⊆ R2 : i, j ∈ Z

}
∪
{

[i, i+ 1]× {j} ⊆ R2 : i, j ∈ Z
}

∪
{
{i} × {j} ⊆ R2 : i, j ∈ Z

}
is a net on R2. The intersection of V, V ′ ∈ τ is again in τ . So V ∩ V ′ is also
contained in the family {W ∈ τ : W ⊆ V ∩ V ′} and hence the latter is a quasi-net
as τ is already a quasi-net.

Figure 2.1: Net τ from (ii), without the edges and points it would be just a quasi-net

21



CHAPTER 2. BASICS

(iii) The family τ =
{
R2
}

is not a quasi-net on R2 because R2 is not compact.
(iv) τ =

{
V ⊆ R2 : V closed and bounded

}
is a net as the intersection of two closed

bounded sets is closed and bounded again.
(v) Cp is a topological Hausdorff space. It is not locally compact, so there exists an

x ∈ Cp such that x has no compact neighbourhood. Therefore for any quasi-net τ
on Cp, the point x would not be contained in any element of τ . Hence there does
not exist a quasi-net on Cp.

Definition 2.1.3. Let X be a topological Hausdorff space together with a net τ . A
K-affinoid atlas A on X with respect to τ is a family of affinoid algebras {AV }V ∈τ ,

together with an isomorphism V
∼−→ M(AV ) for all V ∈ τ , such that for all V, V ′ ∈ τ

with V ′ ⊆ V , there exists a homomorphism of affinoid algebras AV −→ AV ′ that makes
V ′ to an affinoid subdomain of V .

Example 2.1.4. The space

(AnK)an = {||.|| : K[T ] −→ R≥ multiplicative seminorm that continues |.|K}

is endowed with the weakest topology such that ||.|| 7−→ ||f || is continuous for any
f ∈ K[T ]. One can show easily that this topological space is Hausdorff. Define

τ :=
{
M(Tn,r)

∣∣ r ∈ Rn≥0

}
where

Tn,r :=

{∑
I∈Nn

aIT
I ∈ K[[T ]]

∣∣∣∣∣ |aI |rI −−−−−→|I|→+∞
0

}
.

This is a net:

M(Tn,r) = {||.|| : Tn,r −→ R≥ multiplicative seminorm

that continues |.|K and is not zero}

is a compact topological space (Satz 5.7, [Wer]) that can be considered as a subset of
(AnK)an by the restriction

ι :M(Tn,r) −→ (AnK)an ,

||.|| 7−→ ||.||
∣∣
K[T ]

which is injective (Lemma 5.13, [Wer]). Hence τ consists of compact subsets and each
||.|| ∈ (AnK)an is contained in an M(Tn,r) for a suitable r ∈ Rn≥0, as it is shown in the
following:

Let ||.|| ∈ (AnK)an and define r1 := ||T1||, ..., rn := ||Tn||. This allows to extend ||.|| to
a multiplicative seminorm ||.||ext that continues |.|K and is not zero, such that ||.||ext ∈
M(Tn,r) for r := (r1, ..., rn) in the following way:

22



2.1. BERKOVICH ANALYTIC SPACES

Let f =
∑

i∈Nn aiT
i ∈ Tn,r. By definition we have |ai|Kri −→ 0 for |i| −→ ∞. Therefore

the series (fk)k∈N, defined by

fk :=
∣∣∣∣∣∣ ∑

i∈Nn
|i|≤k

aiT
i
∣∣∣∣∣∣,

converges in R≥0.

||f ||ext := lim
k→+∞

fk

specifies a multiplicative seminorm on Tn,r that extends ||.||. Hence ι(||.||ext) = ||.||, and
any ||.|| ∈ (AnK)an is contained in a closed neighbourhoodM(Tn,r) for a suitable r ∈ Rn≥0.
Thus τ is a quasi-net. Since

M(Tn,r) ∩M(Tn,s) =M(Tn,t)

for t ∈ Rn≥0, defined by ti := min{ri, ti}, τ is a net on (AnK)an.
Then, by the definition AM(Tn,r) := Tn,r, the family

A := {AV }V ∈τ
is a K-affinoid atlas with respect to τ , as the trivial isomorphism

M(Tn,r)
∼−→M(AV ) =M(Tn,r),

exists and for M(Tn,r) ⊆M(Tn,s), that is ri ≤ si for all i ∈ {1, ..., n}, the inclusion

Tn,s −→ Tn,r

constitutes M(Tn,r) an affinoid subdomain of M(Tn,s).

Definition 2.1.5. A K-analytic space, in the sense of Berkovich, is a tuple (X, τ,A)
where X is a topological Hausdorff space, τ a net on X and A a K-affinoid atlas with
respect to τ .

Remark 2.1.6. Let (X, τ1,A1) and (X, τ2,A2) be two K-analytic spaces with the same
underlying topological Hausdorff space X. If τ1 ⊆ τ2 and correspondingly A1 ⊆ A2

such that (A1)V = (A2)V for V ∈ τ1, one says the K-analytic space (X, τ2,A2) refines
(X, τ1,A1) and one identifies both with each other.

Example 2.1.7. ((AnK)an , τ,A) from Example 2.1.4 is a K-analytic space.

Remark 2.1.8. By section 3.1, [Ber09], the K-analytic spaces form a category, meaning
that morphisms between K-analytic spaces are well-defined.

Definition 2.1.9. A morphism of K-affinoid spaces ϕ : M(A) −→ M(B) is finite if
the canonical homomorphism B −→ A of K-affinoid algebras makes A to a finite Banach
B-algebra.
A morphism of K-analytic spaces ϕ : X −→ Y is finite if there exists a family of
affinoid domains {Vi}i∈I which is a covering of Y such that all ϕ−1(Vi) −→ Vi are finite
morphisms of K-affinoid spaces.

23



CHAPTER 2. BASICS

Definition 2.1.10. Let X,Y be K-analytic spaces. A morphism ϕ : X −→ Y is said to
be finite étale if it is finite and it fulfils the following property: For any affinoid domain
V =M(B) ⊆ Y with ϕ−1(V ) =M(A), where A and B are K-affinoid algebras, A is a
finite étale B-algebra.

ϕ is said to be étale if, for any point x ∈ X, there exists an open neighbourhood
x ∈ U ⊆ X and ϕ(x) ∈ V ⊆ Y such that ϕ induces a finite étale morphism U −→ V .

Example 2.1.11. Let X,Y be K-analytic spaces. If the morphism ϕ : X −→ Y is an
open immersion, it is étale.

Definition 2.1.12. Let X,Y be K-analytic spaces. A morphism ϕ : X −→ Y is
smooth at a point x ∈ X if there exists an open neighbourhood x ∈ U ⊆ X such that
the induced morphism U −→ Y factorizes as

U
ϕ|U //

ϕ1 %%

Y

Y × (AnK)an

ϕ2

99

where ϕ1 is an étale morphism and ϕ2 is the canonical projection. ϕ is said to be
smooth if it is smooth at all points x ∈ X.

Definition 2.1.13. A K-analytic space X is smooth if the canonical morphism X −→
M(K) is smooth.

Example 2.1.14. ((AnK)an , τ,A) from Example 2.1.4 is a smooth K-analytic space.

Proof. It suffices to prove that the canonical morphism

(AnK)an −→M(K) = {|.|K}

is smooth. Considering the trivial open neighbourhood U = (AnK)an, the diagram

(AnK)an //

ϕ1 ''

{|.|K}

{|.|K} × (AnK)an .

ϕ2

77

commutes with ϕ1 : ||.|| 7−→ (|.|K , ||.||) and ϕ2 : (|.|K , ||.||) 7−→ |.|K . Since ϕ1 can be
identified with the identity map on (AnK)an, which is étale, ((AnK)an , τ,A) is a smooth
K-analytic space.

As it always holds Y = M(K) in the definition of a smooth K-analytic space, it is
possible to simplify the definition of a K-analytic space:
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Lemma 2.1.15. A K-analytic space X is smooth if and only if for any x ∈ X there
exists an open neighbourhood x ∈ U ⊆ X such that there is an étale morphism

U −→ (AnK)an

for some n ∈ N\{0}.

Proof. With Y =M(K) = {|.|K}, the diagram of Definition 2.1.12 becomes

U
ϕ|U //

ϕ1 &&

{|.|K}

{|.|K} × (AnK)an ,

ϕ2

77

which always commutes if the étale morphism ϕ1 exists because ϕ|U and ϕ2 are trivial.
Eventually {|.|K} × (AnK)an can be identified with (AnK)an.

Example 2.1.16. By Example 2.1.11 and Lemma 2.1.15, every K-analytic space, which
locally has an open immersion into (AnK)an for some n ∈ N\{0}, is smooth.

Remark 2.1.17. Berkovich has shown that there exists a so called GAGA functor that
associates to every K-scheme X, locally of finite type, a K-analytic space Xan, which
is called the analytification of X. Especially the analytification of an affine K-scheme
X = Spec(A), locally of finite type, where A is a finitely generated ring over K, is equal
to the set of all multiplicative seminorms M(A) on A that continues the absolute value
on K.

Lemma 2.1.18. For the analytification Xan of a K-scheme X that is locally of finite
type, it holds

(i) X is separated if and only if Xan is Hausdorff,
(ii) X is proper if and only if Xan is compact and Hausdorff,

(iii) X is connected if and only if Xan is path-connected,
(iv) X is smooth if and only if Xan is smooth.

Here just the underlying topological space of Xan is considered.

Proof. (i) Theorem 3.4.8 (i), [Ber90].
(ii) Theorem 3.4.8 (ii), [Ber90].
(iii) Theorem 3.4.8 (iii), [Ber90].
(iv) Proposition 3.4.3, [Ber90].

Example 2.1.19. The analytification of the parabola

Spec(K[T1, T2]/(T2 − T 2
1 ))

is a smooth K-analytic space.
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Proof. By Remark 2.1.17, the analytification of Spec(K[T1, T2]/(T2 − T 2
1 )) is

M(K[T1, T2]/(T2 − T 2
1 )).

Since

K[T1, T2]/(T2 − T 2
1 ) ∼= K[T1]

holds, K[T1, T2]/(T2 − T 2
1 ) is a finite étale K[T1]-algebra. Consequently

M(K[T1, T2]/(T2 − T 2
1 )) −→M(K[T1]) = (A1

K)an

is a finite étale morphism, as it is finite, and therefore étale at any point of

M(K[T1, T2]/(T2 − T1
2)).

Lemma 2.1.15 yields that

M(K[T1, T2]/(T2 − T 2
1 )) =

(
Spec(K[T1, T2]/(T2 − T 2

1 ))
)an

is smooth.

Example 2.1.20. The analytification of the cross

Spec(K[T1, T2]/(T1T2))

is not a smooth K-analytic space.

Proof. By Remark 2.1.17, the analytification of Spec(K[T1, T2]/(T1T2)) is

M(K[T1, T2]/(T1T2)).

The aim is to show that the analytic space is not smooth at (0, 0). Let U be a neigh-
bourhood of 0. Then

U =M
({
f ∈ K{T1, T2}/(T1T2) : f converges on U

})
,

where f converges on U means that ||f || is well-defined for all ||.|| ∈ U , and K{T1, T2}
denotes the power series in T1 and T2.

For smoothness on U it would be necessary to show that

U =M
({
f ∈ K{T1, T2}/(T1T2) : f converges on U

})
−→M(K[T1, ..., Tn]) = (AnK)an

is étale for some n ∈ N\{0}, which is equivalent to verifying{
f ∈ K{T1, T2}/(T1T2) : f converges on U

}
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is a finite étale K[T1, ..., Tn]-algebra. For n = 1 it is not finite. Taking n > 2, it is not
a K[T1, ..., Tn]-algebra anymore. The only remaining possibility is n = 2. The latter is
equivalent to

Spec
({
f ∈ K{T1, T2}/(T1T2) : f converges on U

})
−→ Spec(K[T1, T2]) (2.1)

being an étale morphism of schemes. By Theorem 5.1, Exposé I, [GR02], a morphism
of schemes that is of finite type, such as (2.1), is an open immersion if and only if it is
universally injective and étale. A morphism X −→ S is universally injective if and only
if for any morphism of schemes S′ −→ S the base change XS′ −→ S′ is injective. Since

Spec
({
f ∈ K{T1, T2}/(T1T2) : f converges on U

})
is just a subset of Spec(K[T1, T2]), it is universally injective. Therefore the morphism
(2.1) is étale if and only if it is an open immersion. But

Spec
({
f ∈ K{T1, T2}/(T1T2) : f converges on U

})
is not open in Spec(K[T1, T2]). Ergo, there does not exist a neighbourhood U of (0, 0)
and an n ∈ N\{0} such that

U −→ (AnK)an

is étale. Hence M(K[T1, T2]/(T1T2)) is not smooth at (0, 0).

Example 2.1.21. The analytification of the hyperbola

Spec(K[T1, T2]/(T1T2 −$))

is a smooth K-analytic space for $ ∈ K×.

Proof. By Remark 2.1.17, the analytification of Spec(K[T1, T2]/(T1T2 −$)) is

M(K[T1, T2]/(T1T2 −$)).

Considering an element

||.|| ∈ M(K[T1, T2]/(T1T2 −$)),

it holds

||T1T2 −$|| = 0,

and hence ||T1|| 6= 0 because otherwise ||T1T2|| = 0 and then

||T1T2 −$|| = |$| 6= 0

would hold. It follows that

|| 1
T1
|| = 1

||T1||

27



CHAPTER 2. BASICS

is well-defined. Thus the evaluation morphism

T2 7−→
$

T1

delivers the isomorphism

K[T1, T2]/(T1T2 −$) ∼= K[T1, T
−1
1 ]

which yields that

M(K[T1, T2]/(T1T2 −$)) −→M(K[T1, T
−1
1 ]) = (T 1

K)an

is a finite étale morphism. Furthermore the injection of the analytification of the one-
dimensional torus

(T 1
K)an ↪→ (A1

K)an

is étale as it is an open immersion. Since a composition of étale morphisms is still étale,

M(K[T1, T2]/(T1T2 −$)) −→M(K[T1]) = (A1
K)an

is étale, meaning that the hyperbola is smooth.

Remark 2.1.22. The three examples comply with property (iv) of Lemma 2.1.18. As
K-schemes, all examples are smooth, apart from the cross, which is not smooth at (0, 0).

2.2 p-adic Lie theory

Let K be a field that is algebraically closed and complete with respect to a nontrivial,
non-archimedean valuation val : K −→ R ∪ {∞}.

2.2.1 Analytic manifolds

Let M be a Hausdorff topological space, U ⊆ Kr an open subset and E a K-Banach
space.

Definition 2.2.1. A function f : U −→ E is called analytic if, for any point x0 ∈ U ,
there is an open ball Bε(x0) ⊆ U , and f is equal to a power series convergent on this
open ball.

Definition 2.2.2. A chart for M is a triple (U,ϕ,Kn) consisting of an open subset
U ⊆M and a map ϕ : U −→ Kn such that:

(i) ϕ(U) is open in Kn

(ii) ϕ : U
w−→ ϕ(U) is a homeomorphism.
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Definition 2.2.3. Two charts (U1, ϕ1,K
n1) and (U2, ϕ2,K

n2) are called compatible
if both maps

ϕ1(U1 ∩ U2)
ϕ2◦ϕ1

−1
//
ϕ1(U1 ∩ U2)

ϕ1◦ϕ2
−1

oo

are analytic.

M

U1

U2

ϕ1 ϕ2

Figure 2.2: Compatible charts if the lower two maps are analytic

Definition 2.2.4. An atlas for M is a set A = {(Ui, ϕi,Kn)}i∈I of charts for M such
that

(i) any two of these charts are compatible and
(ii) M =

⋃
i∈I Ui.

Definition 2.2.5. Two atlases A and B for M are called equivalent if A ∪ B is also
an atlas for M .

Definition 2.2.6. An atlas A for M is called maximal if any equivalent atlas B for M
satisfies B ⊆ A.

Definition 2.2.7. A naive K-analytic manifold (M,A) is a Hausdorff topological
space M , equipped with a maximal atlas A.

Lemma 2.2.8. Let (M,A) be a naive K-analytic manifold and U ⊆M an open subset.
Then

AU := {(V, ψ,Kn) ∈ A|V ⊆ U}

is a maximal atlas for U .

Proof. The claim after Remark 8.1, [Sch11].
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Definition 2.2.9. (U,AU ) from Lemma 2.2.8 is called a naive open K-analytic sub-
manifold of (M,A).

Example 2.2.10. (i) Kn with

A = {(Ui, ϕi,Kn)| Ui ⊆ Kn open, ϕi = id}i∈I

is a naive K-analytic manifold. Analogous (K×)n.
(ii) Cp is a naive Cp-analytic manifold as Cp is open in Cp, and therefore it is a naive

open Cp-analytic submanifold.

Definition 2.2.11. A function f : M −→ E is called analytic if

f ◦ ϕ−1 : ϕ(U) −→ E

is an analytic function for any chart (U,ϕ) of M .

Let N be a naive K-analytic manifold, too.

Definition 2.2.12. A function g : M −→ N is called analytic if, for any point x ∈M ,
there exists a chart (U,ϕ,Km) for M around x and a chart (V, ψ,Kn) for N around
g(x), such that

(i) g(U) ⊆ V and
(ii) ψ ◦ g ◦ ϕ−1 : ϕ(U) −→ Kn is analytic.

2.2.2 Tangent spaces

Let M be a naive K-analytic manifold.

Definition 2.2.13. Fix a ∈ M . Let c = (U,ϕ,Km) be a chart for M around a.
Furthermore v ∈ Km. Two pairs (c, v) and (c′, v′) are called equivalent if

dϕ(a)(ϕ
′ ◦ ϕ−1)(v) = v′.

Definition 2.2.14. A tangent vector of M at the point a is an equivalence class [c, v]
of pairs (c, v).

Definition 2.2.15. The tangent space of M at a is defined as

Ta(M) := {tangent vectors of M at a}.

Lemma 2.2.16. Let g : M −→ N be an analytic map of naive K-analytic manifolds.
By Definition 2.2.12, there exist a chart c = (U,ϕ,Km) for M around x and a chart
c̃ = (V, ψ,Kn) for N around g(x), such that g(U) ⊆ V . Furthermore there is the map

θc : Km −→ Ta(M), v 7−→ [c, v].

Then

Ta(g) : Ta(M)
θc
−1

−−−−−→ Km Dϕ(a)(ψ◦g◦ϕ−1)
−−−−−−−−−−−−−→ Kn θc̃−−−−→ Tg(a)(N)

is a continuous K-linear map which is independent of the choice of charts.
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Proof. The paragraph after the first Remark in section 9, [Sch11].

Definition 2.2.17. Ta(g), from Lemma 2.2.16, is called the tangent map of g at the
point a.

Lemma 2.2.18. (i) Ta(idM ) = idTa(M)

(ii) Let L
f−→M

g−→ N be two maps of naive K-analytic manifolds. Then

Ta(g ◦ f) = Tf(a)(g) ◦ Ta(f)

holds for any a ∈ L.

Proof. Lemma 9.2 and the Remark before, [Sch11].

2.2.3 Lie groups

Definition 2.2.19. A K-Lie group G is a naive K-analytic manifold which carries the
structure of a group such that the multiplication map

m : G×G −→ G, (g, h) 7−→ gh

is analytic.

Remark 2.2.20. Instead of a C∞-manifold, which is required for defining common Lie
groups, here a naive K-analytic manifold is used. From now on, whenever Lie groups
are mentioned, we are talking about K-Lie groups.

Example 2.2.21. (i) Kn is a K-Lie group.

Proof. (a) Naive K-analytic manifold: Example 2.2.10
(b) Group structure: Addition
(c) Analytic group multiplication:

m : Kn ×Kn −→ Kn, (a, b) 7−→ a+ b

can be written as

m : K2n −→ Kn, x 7−→


x1 + xn+1

x2 + xn+2

...
xn + x2n

 ,

where the entries are polynomials, and m is therefore analytic.

(ii) B+
ε (0) = {x ∈ Kn||x| ≤ ε}, with ε > 0, is a K-Lie group.

Proof. (a) Naive K-analytic manifold: Naive open K-analytic submanifold of Kn
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(b) Group structure: Subgroup of Kn with addition, since

|a+ b| ≤ max (|a|, |b|) ≤ ε

(c) Analytic group multiplication: See (i)

(iii) {x ∈ Cp| |x| = 1} is a Cp-Lie group.

Proof. (a) Naive Cp-analytic manifold: Naive open Cp-analytic submanifold of Cp
(b) Group structure: Subgroup of Cp with multiplication, since |a · b| = |a| · |b| = 1
(c) Analytic group multiplication:

m : Cp × Cp −→ Cp, (a, b) 7−→ a · b

is a polynomial, and m is therefore analytic.

(iv) GLn(K) is a K-Lie group.

Proof. (a) Naive K-analytic manifold: Naive open K-analytic submanifold of Kn2
,

since det : Mn(K) −→ K is continuous and K× is open in K.
(b) Group structure: Clear
(c) Analytic group multiplication: As every entry cik =

∑n
j=1 aij ·bjk of the matrix

product A ·B is a polynomial, the multiplication is analytic.

Definition 2.2.22. Let G,H be K-Lie groups. The map

ϕ : G −→ H

is a K-Lie group homomorphism if

(i) ϕ is a group homomorphism of the underlying groups and
(ii) ϕ is an analytic function of the underlying naive K-analytic manifolds.

2.2.4 Lie algebras

Definition 2.2.23. A Lie algebra is a K-vector space g together with the operation

[·, ·] : g× g −→ g,

(x, y) 7−→ [x, y]

such that the following conditions hold:

(i) [·, ·] is bilinear.
(ii) The Jacobi identity [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 holds.
(iii) [x, x] = 0 for every x ∈ g.

[·, ·] is called the Lie bracket.

Definition 2.2.24. Denote the identity element of G by e. Then

Lie(G) := (Te(G), [·, ·])

is called the Lie algebra of G. For the definition of the brackets see section 13, [Sch11].
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2.3 Weighted graphs

Definition 2.3.1. A graph G is defined as a non-empty set of vertices V (G) and a set
of edges E(G) together with an edge assignment map

ιass : E(G) −→ V (G)× V (G).

For an edge e ∈ E(G) with ιass(e) = (V1, V2), the element e− := V1 is said to be the tail
vertex and e+ := V2 the head vertex of e.

Definition 2.3.2. A graph G is called connected if for any two vertices V, V ′ ∈ V (G)
there exists a finite number of vertices V0 = V, V1, ..., Vn−1, Vn = V ′ and a finite number
of edges e1, ..., en ∈ E(G) such that

ιass(ei) = (Vi−1, Vi).

Figure 2.3: Connected graph Figure 2.4: Disconnected graph

Definition 2.3.3. A graph G is called antisymmetric if for any two edges e, e′, with
ιass(e) = (V1, V2) and ιass(e

′) = (V2, V1), it holds V1 = V2.

Figure 2.5: Antisymmetric graph Figure 2.6: Non-antisymmetric graph

Definition 2.3.4. A graph G is called weighted if there exists a length map

l : E(G) −→ R>0.
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Figure 2.7: Weighted graph
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Figure 2.8: Not a weighted graph

Definition 2.3.5. Let G be a connected, antisymmetric, weighted graph and A = Z
or A = R. Define C0(G,A) to be the free A-module generated by the vertex set V (G).
Furthermore C1(G,A) is defined to be the free A-module generated by the edge set E(G).
The elements of C0(G,A) are called 0-chains with coefficients in A, and the elements of
C1(G,A) are called 1-chains with coefficients in A.

Let G be a connected, antisymmetric, weighted graph for the rest of the section.

Remark 2.3.6. For e ∈ E(G) one may consider the element (−1)e ∈ C1(G,A) as the
inverse edge, that is the edge with changed tail and head vertex.

Remark 2.3.7. As any element f =
∑

V ∈V (G) nV V ∈ C0(G,A) is a finite A-linear
combination of vertices, meaning nV ∈ A, and nV 6= 0 just for a finite number of
V ∈ V (G), one may identify f with the function

f : V (G) −→ A,

V 7−→ nV .

Doing the same for any α =
∑

e∈E(G) nee ∈ C1(G,A), allows to identify α with the
function

α : E(G) −→ A,

e 7−→ ne.

Definition 2.3.8. Define the following products,

〈f1, f2〉0 :=
∑

V ∈V (G)

f1(V )f2(V )

for f1, f2 ∈ C0(G,R) and

〈α1, α2〉1 :=
∑

e∈E(G)

α1(e)α2(e)l(e)

for α1, α2 ∈ C1(G,R), on C0(G,R) respectively C1(G,R).
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Lemma 2.3.9. Both products from Definition 2.3.8 are scalar products.

Proof. Since A = R is a field, the A-module C0(G,A) respectively C1(G,A) becomes an
R-vector space C0(G,R) respectively C1(G,R), where a scalar product can be defined.

Linearity: Both products are linear in both arguments.

Symmetry: Follows from the commutativity of R.

Positive definiteness: It holds

〈f, f〉0 :=
∑

V ∈V (G)

(f(V ))2 ≥ 0

for f ∈ C0(G,R), and
∑

V ∈V (G) (f(V ))2 = 0 only if f(V ) = 0 for all V ∈ V (G), which
means f = 0. The same result follows for the product on C1(G,R), as l(e) ∈ R>0 for all
e ∈ C1(G,R).

Definition 2.3.10. The differential operator d on C0(G,R) is defined as the map

d: C0(G,R) −→ C1(G,R),

f 7−→ df

with df ∈ C1(G,R) specified as

df : E(G) −→ R,

e 7−→ f(e+)− f(e−)

l(e)
.

Lemma 2.3.11. The adjoint operator of the differential operator d, with respect to the
two scalar products from Definition 2.3.8, is given by

d∗ : C1(G,R) −→ C0(G,R),

α 7−→ d∗α

with d∗α ∈ C0(G,R) defined as

d∗α : V (G) −→ R,

V 7−→
∑

e∈E(G)

e+=V

α(e)−
∑

e∈E(G)

e−=V

α(e).

Proof. First, the adjoint operator of d exists and is unique as d is linear. So it suffices
to prove the equality

〈df, α〉1 = 〈f, d∗α〉0

for all f ∈ C0(G,R), α ∈ C1(G,R):
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〈df, α〉1 =
∑

e∈E(G)

df(e)α(e)l(e)

=
∑

e∈E(G)

f(e+)− f(e−)

l(e)
α(e)l(e)

=
∑

e∈E(G)

(
f(e+)− f(e−)

)
α(e)

=
∑

e∈E(G)

f(e+)α(e)−
∑

e∈E(G)

f(e−)α(e)

=
∑

V ∈V (G)

 ∑
e∈E(G)

e+=V

f(V )α(e)−
∑

e∈E(G)

e−=V

f(V )α(e)



=
∑

V ∈V (G)

f(V )

 ∑
e∈E(G)

e+=V

α(e)−
∑

e∈E(G)

e−=V

α(e)


=

∑
V ∈V (G)

f(V ) d∗α(V )

= 〈f, d∗α〉0

Definition 2.3.12. The real 1-cycles are defined as H1(G,R) := ker(d∗) and the
integral 1-cycles as H1(G,Z) := H1(G,R) ∩ C1(G,Z).

Example 2.3.13. The orange 1-chain e3 +e2−e1 in Figure 2.9 is a cycle, but the green
1-chain e5 + e6 not because it has the vertex at the left top just once as a tail vertex and
not as a head vertex.

e1

e3

e2

e4

e5

e7

e6

e3 + e2 − e1

e5 + e6

Figure 2.9: 1-cycles form loops
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Definition 2.3.14. Let G1, G2 be two connected, antisymmetric, weighted graphs. It
is said that G2 refines G1 if there exists an injection

a : V (G1) ↪→ V (G2)

and a surjection

b : E(G2)� E(G1)

such that for any edge of G1 there exist vertices

V0 = a(e−), V1, ..., Vn−1, Vn = a(e+) ∈ V (G2)

and edges

e1, ..., en ∈ E(G2)

such that

(i) b−1(e) = {e1, ..., en},
(ii)

∑n
i=1 l(ei) = l(e) and

(iii) ιass(ei) = (Vi−1, Vi) for all i = 1, ..., n

where ιass is the edge assignment map with respect to G2.
For α =

∑
e∈E(G1) nee ∈ C1(G1, A) the element

αrefine =
∑

e∈E(G2)

nb(e)e ∈ C1(G2, A)

is called the refinement of α.

5

2

Figure 2.10: Graph G

2

3 2

Figure 2.11: This graph refines G

Definition 2.3.15. Define the edge length pairing as the map

[., .] : C1(G,A)× C1(G,A) −→ R,

(α1, α2) 7−→
∑

e∈E(G)

nemel(e)

with α1 =
∑

e∈E(G) nee, α2 =
∑

e∈E(G)mee ∈ C1(G,A).
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Lemma 2.3.16. The edge length pairing is bilinear and symmetric.

Proof. Symmetry follows directly from the commutativity of R. For λ ∈ A and α1 =∑
e∈E(G) nee, α

′
1 =

∑
e∈E(G) n

′
ee, α2 =

∑
e∈E(G)mee ∈ C1(G,A) we have

[λα1, α2] =

λ ∑
e∈E(G)

nee,
∑

e∈E(G)

mee


=

 ∑
e∈E(G)

λnee,
∑

e∈E(G)

mee


=

∑
e∈E(G)

λnemel(e)

= λ
∑

e∈E(G)

nemel(e)

= λ [α1, α2]

and

[
α1 + α′1, α2

]
=

 ∑
e∈E(G)

nee+
∑

e∈E(G)

n′ee

 ,
∑

e∈E(G)

mee


=

 ∑
e∈E(G)

(
ne + n′e

)
e,
∑

e∈E(G)

mee


=

∑
e∈E(G)

(
ne + n′e

)
mel(e)

=
∑

e∈E(G)

nemel(e) +
∑

e∈E(G)

n′emel(e)

= [α1, α2] +
[
α′1, α2

]
.

Linearity in the second argument follows from linearity in the first argument in combi-
nation with the symmetry.

Lemma 2.3.17. The edge length pairing is retained under refinement.

Proof. LetG1, G2 be two connected, antisymmetric, weighted graphs such thatG2 refines
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G1 and α1 =
∑

e∈E(G1) nee, α2 =
∑

e∈E(G1)mee ∈ C1(G1, A). Then the refinement of

[α1, α2] =
∑

e∈E(G1)

nemel(e)

=
∑

e∈E(G1)

neme

 ∑
e′∈b−1(e)

l(e′)


=

∑
e∈E(G1)

∑
e′∈b−1(e)

nb(e′)mb(e′)l(e
′)

=
∑

e′∈E(G2)

nb(e′)mb(e′)l(e
′) as b is surjective

=

 ∑
e′∈E(G2)

nb(e′)e
′,

∑
e′∈E(G2)

mb(e′)e
′


= [α1,refine, α2,refine]

Definition 2.3.18. A path from a vertex V1 to a vertex V2 on a graph G is defined to
be an element α =

∑
e∈E(G) nee ∈ C1(G,Z) such that

d∗α(V ) =


−1 for V = V1

1 for V = V2

0 for all V 6= V1, V2

if V1 6= V2 and

d∗α(V ) = 0 for all V ∈ V (G)

if V1 = V2.

Figure 2.12: A path
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Lemma 2.3.19. Let G be a connected graph and V1, V2 ∈ V (G). Then there exists a
path from V1 to V2.

Proof. For V1 = V2 there exists the trivial path α = 0. Assume now V1 6= V2. AsG is con-
nected by definition, there exists a finite number of vertices U0 = V1, U1, ..., Un−1, Un =
V2 and a finite number of edges e1, ..., en ∈ E(G) such that ιass(ei) = (Ui−1, Ui). Define
now

α :=
n∑
i=1

ei ∈ C1(G,Z).

For i = 1, ..., n− 1 each vertex Ui appears once as tail vertex and once as head vertex of
the edges e1, ..., en ∈ E(G). Hence d∗α(Ui) = 0 for i = 1, ..., n− 1. As U0 = V1 appears
only as tail vertex, Un = V2 only as head vertex and all the other vertices do not appear
at all, we have

d∗α(V ) =


−1 for V = V1

1 for V = V2

0 for all V 6= V1, V2.

2.4 Raynaud uniformization

Let A be an abelian Cp-variety. Denote the valuation ring of Cp by Cp and its maximal

ideal by Cp. Its fraction field is then Cp/Cp = Fp =
⋃
n∈N\{0} Fpn . The following is a

summary of the sections 3.4.1 in [KRZ16b] and 4 in [BR14].

Construction 2.4.1. By Theorem 1.1, [BL91], the Cp-modelA of the abelian Cp-variety
A possesses the property that its special fibre Ā := As (s denotes the special fibre) fits
into the short exact sequence

0 T̄ Ā B̄ 0.

Denote by M the character lattice of a torus T , then T = Spec(Cp[M ]) and T̄ =
Spec(Fp[M ]). Furthermore B̄ is the reduction of an abelian variety B of good reduction.
Raynaud showed that there are suitable T and B such that the exact sequence exists.
Now let Â be the p-adic completion of A. This is now a so called formal scheme. For
more details on formal schemes it is referred to chapter II.9 in [Har77]. A0 := (Â)η is
defined to be the generic fibre of Â. This is an analytic subdomain of Aan and a formal
Cp-Lie subgroup. Since formal Lie groups just play a minor part in this paper, it is
referred to chapter 6.5 in [Ber90] for more details on the last facts.
The isomorphism (Â)s ∼= As delivers

Ā = As ∼= (Â)s =: Ā0,
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which transforms the above sequence into

0 T̄ Ā0 B̄ 0.

Lifting this short exact sequence delivers

0 T0 A0 Ban 0.

For details see section 4.1, [BR14].

Construction 2.4.2. Let π : Υ −→ Aan be the topological universal cover of Aan. Then,
after choosing a point in the fibre over 0 ∈ Aan to be the origin, Υ has a unique structure
of a Cp-Lie group, such that π is a homomorphism of Cp-Lie groups. Furthermore Υ is
the analytification of an algebraic group E, therefore we can write Υ = Ean. Since π is
a local isomorphism, its kernel

M ′ := ker(π) ∼= H1(Aan,Z)

is a discrete subgroup of Ean(Cp). This delivers the short exact sequence

0 M ′ Ean Aan 0.π

Furthermore one gets the short exact sequence (4.1.2) from [BR14]

0 T E B 0

whose analytification is

0 T an Ean Ban 0.

These results are often summarized in the Raynaud uniformization cross:

T an

M ′ Ean Aan

Ban

π

Definition 2.4.3. Let M be the character lattice of T , N = Hom(M,Z) its dual and
χu ∈ Cp[M ] the character of T corresponding to u ∈ M . Then the tropicalization
map is defined as

trop : T an −→ NR = Hom(M,R),

||.|| 7−→ ξ||.||

with

ξ||.|| : M −→ R,
u 7−→ − log ||χu||.
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Construction 2.4.4. The goal is to extend this tropicalization map to the universal
cover of Aan. Constructions 2.4.1 and 2.4.2 yield the following diagram, consisting of
two short exact sequences:

0 T0 A0 Ban 0

0 T an Ean Ban 0

α

ι1 ι2 id

β

This diagram is commutative as ι1 and ι2 are just inclusions. In the case of rigid analysis,
Siegfried Bosch and Werner Lütkebohmert showed in section 3 on p. 665 of [BL91] that
the rigid analogue of Ean is the push-out of the rigid analogues of T an and A0 with
respect to ι1 and α. Walter Gubler adapted this result to Berkovich theory. In section
4.1, [Gub10] he showed that Ean is the push-out of T an and A0 with respect to ι1 and
α in the category of Cp-analytic groups. For the definition of a K-analytic group and
more information about it, it is referred to the beginning of section 5.1, [Ber90].
These results are summarized in the following push-out diagram:

T0 A0

T an Ean

NR

α

ι1 ι2
0

β

trop

∃!

It holds trop ◦ι1 = 0, as T0 = trop−1(0), and therefore trop ◦ι1 = α ◦ 0. The universal
property of the push-out yields now a unique morphism Ean −→ NR which will also be
denoted by trop.

Corollary 2.4.5. One has the short exact sequence

0 A0 Ean NR 0.
trop

Proof. The push-out square in Construction 2.4.4 delivers the sequence

0 A0 Ean NR 0.
ι2 trop

It is exact at

A0: ι2 is an inclusion, hence injective.

Ean: Im(ι2) = A0 as it is an inclusion. From the first diagram in Construction 2.4.4 it
is known that Ean = β(T an) + ι2(A0), hence

tropEan(Ean) = tropEan (β(T an) + ι2(A0))

= (tropEan ◦β)(T an) + (tropEan ◦ι2)(A0)

= tropT an(T an) + 0(A0)

= tropT an(T an)
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where tropEan respectively tropT an denotes the tropicalization map from Ean re-
spectively T an to NR. Consequently an element e ∈ Ean is mapped by tropEan to
zero if it can be written as a sum

e = t0 + a0

with t0 ∈ T0 = trop−1
T an(0) and a0 ∈ A0. Since T0 injects into A0, we have

ker(tropEan) = A0

and the sequence is exact at Ean.

NR: The map tropT an : T an −→ NR is surjective and therefore tropEan as well because
tropT an = tropEan ◦β. This means the sequence is exact at NR.

Corollary 2.4.6. Restricting to Cp-rational points delivers the short exact sequence

0 A0(Cp) E(Cp) NQ 0.
trop

Proof. Restricting to Cp-rational points yields the map

trop : Ean(Cp) −→ NQ,

as val(C×p ) = Q. On top of that all the Cp-rational points of Ean are already in E, which
means that Ean(Cp) = E(Cp). Finally

ker(trop : E(Cp) −→ NQ) = A0 ∩ E(Cp) = A0(Cp)

as A0 is a subset of Ean. This proves the exactness of the above sequence.

Example 2.4.7. Corollary 2.4.6 can also be proved without using the reference [Gub10]
of Walter Gubler. For this purpose we will restrict to the Cp-rational points of the two
short exact sequences in Construction 2.4.4:

0 T0(Cp) A0(Cp) B(Cp) 0

0 T (Cp) E(Cp) B(Cp) 0

α

ι1

τ1

ι2 id

β τ2

This is a commutative diagram in the category of abelian groups and it is possible to
prove the universal property of a push-out by hand for E(Cp).
The first goal is to show that E(Cp) is the sum of ι2(A0(Cp)) and β(T (Cp)). Let x ∈
E(Cp). Then τ2(x) ∈ B(Cp) and, since τ1 is surjective, there exists an element a0 ∈
A0(Cp) such that

τ1(a0) = τ2(x).

43



CHAPTER 2. BASICS

Commutativity of the right square yields

τ1(a0) = τ2(ι2(a0))

and hence

τ2(x− ι2(a0)) = τ2(x)− τ2(ι2(a0)) = 0,

which means x− ι2(a0) ∈ ker(τ2) = Im(β). Ergo, there exists an element t ∈ T (Cp) such
that β(t) = x− ι2(a0). Written as

x = β(t) + ι2(a0),

this shows the claim.
Commutativity of the left square delivers

β ◦ ι1 = ι2 ◦ α. (2.2)

Take now an abelian group G with homomorphisms

β′ : T (Cp) −→ G

and

ι′2 : A0(Cp) −→ G

such that

β′ ◦ ι1 = ι′2 ◦ α. (2.3)

Define a map

ϕ : E(Cp) −→ G,

x = β(t) + ι2(a0) 7−→ β′(t) + ι′2(a0).

To show well-definedness, it suffices to prove ϕ(0) = 0.
Let β(t) + ι2(a0) = 0, meaning

0 = τ2(β(t) + ι2(a0))

= τ2(β(t)) + τ2(ι2(a0))

= 0 + τ2(ι2(a0))

= τ1(a0)

and a0 ∈ ker(τ1) = Im(α). Hence there exists a t0 ∈ T0(Cp) with α(t0) = a0.
This and (2.2) yield

0 = β(t) + ι2(a0)

= β(t) + ι2(α(t0))

= β(t) + β(ι1(t0))

= β(t+ ι1(t0))
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which delivers t+ι1(t0) = 0 in combination with the injectivity of β. This can be written
as t = −ι1(t0).
These results give

β′(t) + ι′2(a0) = β′(−ι1(t0)) + ι′2(α(t0))

= ι′2(α(t0))− β′(ι1(t0))

=
(
ι′2 ◦ α− β′ ◦ ι1

)
(t0)

= 0

because of (2.3). This means ϕ is well-defined. Furthermore it follows directly from the
definition that ϕ is a homomorphism.
The commutativity of the diagram

T0(Cp) A0(Cp)

T (Cp) E(Cp)

G

α

ι1 ι2
ι′2β

β′

ϕ

follows easily by setting a0 = 0 respectively t = 0 in the definition of ϕ.
It remains to show the uniqueness of ϕ. Suppose ψ also fulfils the universal property of
the push-out, meaning ψ ◦ β = β′ and ψ ◦ ι2 = ι′2. Then

ψ(β(t) + ι2(a0)) = (ψ ◦ β)(t) + (ψ ◦ ι2)(a0)

= β′(t) + ι′2(a0)

= (ϕ ◦ β)(t) + (ϕ ◦ ι2)(a0)

= ϕ(β(t) + ι2(a0))

and therefore ψ = ϕ.
It has been shown that, for any abelian group G and homomorphisms β′ and ι′2, there
exists a unique homomorphism ϕ, fulfilling the desired properties. This means that the
left square of the two short exact sequences on top is a push-out square.
Defining G := NQ, β′ := trop and ι′2 := 0 yields the short sequence

0 A0(Cp) E(Cp) NQ 0.
trop

Exactness is shown the same way as in the proof of Corollary 2.4.5.
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2.5 Differential one-forms

Let R be a ring, A an R-algebra and M an A-module.

Definition 2.5.1. An R-linear derivation on A is an R-module homomorphism

d: A −→M

satisfying the Leibniz rule

d(fg) = f dg + g df.

Lemma 2.5.2. It holds dr = 0 for r ∈ R.

Proof. From dr = r d1 (linearity) and dr = d(1 ·r) = 1 dr+r d1 (Leibniz rule) it follows

dr = 1 dr = 0.

Definition 2.5.3. DerR(A,M) is defined to be the set of R-linear derivations

d: A −→M.

Definition 2.5.4. The module of Kähler differentials is defined as the A-module
ΩA/R, for which there exists a universal R-linear derivation

d: A −→ ΩA/R.

This means that, if d′ : A −→ M is another R-linear derivation, there exists a unique
A-module homomorphism ϕ : ΩA/R −→M such that

A ΩA/R

M

d

d′ ∃!ϕ

commutes.

Lemma 2.5.5. This definition yields the natural isomorphism

DerR(A,M)
∼−−→ HomA(ΩA/R,M)

d′ 7−→ ϕ.

Proof. The homomorphism property is clear. Injectivity follows from the uniqueness of
ϕ. Eventually the map is surjective, as for any A-module homomorphism

ϕ′ : ΩA/R −→M,

the composition ϕ′ ◦ d is an R-linear derivation d: A −→M .
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Lemma 2.5.6. If A is generated by a set S ⊆ A as an R-algebra, then ΩA/R is generated
by dS = {ds|s ∈ S} as an A-module.

Proof. This follows directly from the R-linearity of d and the universal property.

Example 2.5.7. Let A = R[x1, ..., xn], then ΩA/R is generated by dx1, ..., dxn as an
R[x1, ..., xn]-module, meaning that the elements of ΩA/R look like

f1 dx1 + ...+ fn dxn

with f1, ..., fn ∈ R[x1, ..., xn].

Example 2.5.8. Let A ⊆ K[[T, T−1]] be the subset of all formal Laurent series that
converge on the open annulus around 0, of inner radius r and outer radius R with
r,R ∈ R>0 and r < R, then ΩA/K is generated by dT and dT−1 as an K[[T, T−1]]-
module. The K-algebra A ⊆ K[[T, T−1]] is not generated by T and T−1 as we do not
just have polynomials, but the proof of Lemma 2.5.6 works for Laurent series as well,
because they are K-linear. The calculation

0 = d1 = d(TT−1) = T dT−1 + T−1 dT

yields

dT−1 = −T−2 dT.

This makes dT the only generator of ΩA/K . Hence we can write any differential one-form
ω ∈ ΩA/K as

ω = f dT

where f ∈ A ⊆ K[[T, T−1]] is a formal Laurent series that converges on the mentioned
open annulus around 0.

Example 2.5.9. In the case of Example 2.5.8 with char(K) = 0 it holds

Tn dT = d
(

1
n+1T

n+1
)

for any n ∈ Z\{−1}.

Proof. Case 1: n ∈ N
The proof will be done by induction. The claim is trivial for n = 0. Assume now that it
is true for n− 1 ∈ N, that means nTn−1 dT = dTn. Then

dTn+1 = Tn dT + T dTn

= Tn dT + TnTn−1 dT

= Tn dT + nTn dT

= (n+ 1)Tn dT
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which delivers the claim, as n+ 1 is invertible in K.

Case 2: −n ∈ N\{0, 1}
Let m := −n and try to prove the claim

T−m dT = d
(

1
−m+1T

−m+1
)

The proof will again be done by induction. For m = 2 the initial step

dT−1 = −T−2 dT

comes from Example 2.5.8. Assume now that it is true for m ∈ N\{0, 1}. The aim is to
prove the equation for m+ 1.

dT−m = T−m+1 dT−1 + T−1 dT−m+1

= T−m+1(−T−2 dT ) + T−1(−m+ 1)T−m dT

= −T−m−1 dT + (−m+ 1)T−m−1 dT

= −mT−m−1 dT

delivers

d
(

1
−mT

−m
)

= T−(m+1) dT

because −m is invertible, which is the claim for m+ 1.

Remark 2.5.10. Due to Example 2.5.9, for any formal Laurent series∑
n∈Z\{−1}

anT
n,

the equality ( ∑
n∈Z\{−1}

anT
n
)

dT = d
( ∑
n∈Z\{−1}

1
n+1anT

n+1
)

holds. The transformation of the formal Laurent series from above into the formal Lau-
rent series on the right-hand side of the equality is called formal antidifferentation.

Definition 2.5.11. Assume that X = Spec(A) −→ Y = Spec(R) is a morphism of
affine schemes. The sheaf of Kähler differentials ΩX/Y is the quasi-coherent sheaf
associated to the module of Kähler differentials ΩA/R. For a scheme X over a field K
it is written ΩX/K instead of ΩX/Y , for R = K and hence Y = Spec(K). The elements
ω ∈ ΩX/K are also called differential one-forms on X. For this reason one may also
write Ω1

X/K instead of ΩX/K .
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Remark 2.5.12. In the case that X is a scheme over a field K, one has A = OX , the
structure sheaf of X. Hence the universal derivation is a map

d: OX −→ ΩX/K .

This derivation extends now in a natural way to a sequence of maps

0 −−−→ OX
d−−−→ ΩX/K

d−−−→ Ω2
X/K

d−−−→ Ω3
X/K

d−−−→ ...

with Ωn
X/K :=

∧
n ΩX/K . This complex is called the de Rham complex and fulfils

d ◦ d = 0. Since this construction is not important for this paper, it is referred to
literature about de Rham cohomology for further information.

Definition 2.5.13. A differential one-form ω ∈ ΩX/K is called closed if dω = 0. The
set of closed differential one-forms in ΩX/K is denoted by Z1

dR(X).

Definition 2.5.14. A differential one-form ω ∈ ΩX/K is called exact if there exists a
function F ∈ OX such that ω = dF .

Lemma 2.5.15. Every exact differential one-form is closed.

Proof. dω = ddF = 0 as d ◦d = 0 holds in the de Rham complex.

Definition 2.5.16. Assume that X has additionally the structure of a K-Lie group,
where K is a non-archimedean field. A differential one-form ω ∈ ΩX/K is called invari-
ant if

(Lx)∗ω = ω

and

(Rx)∗ω = ω

where Lx respectively Rx are the translations on X by left respectively right addition of
x. The set of invariant differential one-forms in ΩX/K is denoted by Ω1

inv(X).

2.6 Skeletons

Let K be a field that is algebraically closed and complete with respect to a nontrivial,
non-archimedean valuation val : K −→ R ∪ {∞}. The valuation ring of K will be
denoted by R, its maximal ideal by m and its fraction field R/m by k. This section will
be restricted to the case K = Cp.

Definition 2.6.1. Let X be a smooth, proper, connected Cp-curve. A proper, con-
nected, flat R-scheme X of relative dimension 1 is called a semistable model of X if
its generic fibre is equal to the smooth curve X and the only singularities of its special
fibre Xk are double points.
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Remark 2.6.2. This semistable model creates a reduction map between Xan and Xk.
The whole situation is depicted in the following figure.

red

model X

special fibreanalytification of

the generic fibre

XkXan

Figure 2.13: Interplay of the model X and the curve X

Theorem 2.6.3. Let X be a semistable model, X = XK its generic fibre and x̃ ∈ Xk a
point in the special fibre. Then

(i) x̃ is a generic point if and only if red−1(x̃) is a singleton (called vertex),
(ii) x̃ is a smooth point if and only if red−1(x̃) ∼= B(1)+ and

(iii) x̃ is a double point if and only if red−1(x̃) ∼= S(ρ)+ for some ρ ∈ |C×p |.

Proof. Theorem 3.2.4, [KRZ16a].

Construction 2.6.4. Consider the tropicalization map from Definition 2.4.3 and choose
the character lattice M to be

{..., T−2, T−1, 1, T, T 2, ...}

where this T has to be considered as a symbol and not to be mistaken with the torus T .
This yields the torus

T = Spec(Cp[T, T−1]).

Its analytification is the set of all multiplicative seminorms on Cp[T, T−1] that continues
the absolute value on Cp. This is a Berkovich analytic space with net

τ = {S(R, 0)},

where R ∈ R and S(R, 0) is the set of all multiplicative seminorms on the Laurent
series that converges for all T ∈ Cp with 0 < |T | < R. In the case R = 1, one gets
S(1, 0) = S(0)+.
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{x ∈ Cp|0 < |x|p < R}

0

Figure 2.14: S(R, 0)

Taking the limit R −→ +∞, the analytification T an of the torus may be depicted as

{x ∈ Cp|0 < |x|p}

0

Figure 2.15: T an
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where the bold line in the middle represents all multiplicative seminorms

ζa,r : Cp[T, T−1] −→ Cp,
f(T ) 7−→ sup

|y−a|p≤r
y 6=0

|f(y)|,

with a = 0 for r ∈ |C×p |.
For M = {..., T−2, T−1, 1, T, T 2, ...}, the tropicalization map is defined on T an by

trop : T an −→ NR = Hom(M,R),

||.|| 7−→ ξ||.||

with

ξ||.|| : M −→ R,
Tn 7−→ − log ||Tn||

Choosing the basis of M to be the symbol T , one can identify the homomorphism ξ||.||
with the image of the basis element T , meaning that − log ||T || ∈ R. This leads to the
map

trop : T an −→ R,
||.|| 7−→ − log ||T ||

and, if the notation ζa,r is used for the multiplicative seminorm ||.||, this becomes

trop : T an −→ R, (2.4)

ζa,r 7−→ − log
(

sup
|y−a|p≤r
y 6=0

|y|
)
.

Since

|y|p ≤ max(|y − a|p, |a|p)

and

|a− a|p = 0 ≤ r

hold, the equation

sup
|y−a|p≤r
y 6=0

|y|p = |a|p

is true in the case a 6= 0. For a = 0 it holds

sup
|y−0|p≤r
y 6=0

|y| = r.
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Hence (2.4) transforms into

trop : T an −→ R,

ζa,r 7−→

{
− log(|a|p) if a 6= 0

− log(r) if a = 0.

Consider a point ζa,r for a 6= 0 in Figure 2.15. Going upwards along the branches, one
arrives sometime at the bold line in the middle. The first point that one reaches there is
the element ζ0,r0 with the following property: a must lie in the domain of ζ0,r0 , meaning
|a|p ≤ r0 and for any r1 < r0 it must not lie in the domain of ζ0,r1 , which means |a|p > r1.
Consequently one gets

r0 = |a|p.

This process makes it possible to map every ζa,r with a 6= 0 to ζ0,|a|p , and to hold every
ζa,r with a = 0.

ζ0,r 7−→ r

delivers an identification of the bold line in Figure 2.15 with |C×p |. Under this identifi-
cation, the process may be described by the map

abs : T an −→ |C×p |,

ζa,r 7−→

{
|a|p if a 6= 0

r if a = 0.

− log maps finally |C×p | into R, and this composition gives the tropicalization map

trop = − log ◦ abs .

The process created a descriptive imagination of the tropicalization map. It takes points
in the analytification T an back to the bold line in the middle. Let ζ0,r0 be the first point
that is reached there, then one finally gets − log(r0).
One can restrict this process to S(ρ)+, which may be considered as a subset of T an.
But then, only the points ζ0,r0 on the bold line, with ρ < r0 < 1, will be reached.
These points build the skeleton Σ (S(ρ)+) of the open annulus S(ρ)+, and the process
is called retraction. Eventually the retraction reaches just values between − log(1) = 0
and − log(ρ). This is an interval on R with length − log(ρ). This is defined to be the
associated length of Σ (S(ρ)+). The retraction on S(ρ)+ may be identified with the
tropicalization map. Furthermore the retraction can also be applied to the open annuli
in the semistable decomposition as they are isomorphic to S(ρ)+.

Definition 2.6.5. By Corollary 3.2.5, [KRZ16a], the analytification Xan is a union of
finitely many singletons, infinitely many open balls isomorphic to B(1)+ and finitely
many open annuli isomorphic to S(ρ)+, for possibly different ρ ∈ |C×p |. This is called
the semistable decomposition of Xan.
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Definition 2.6.6. The skeleton ΓX of X with respect to the semistable model X is
defined to be the union of all singletons and all the subsets of Xan that are isomorphic
to the skeletons of the open annuli in the semistable decomposition. Note that ΓX is a
subset of Xan.

Construction 2.6.7. One may associate a weighted graph to the skeleton ΓX in the
following way. Take the singletons to be vertices. The annuli are the pre-images of double
points, which come from intersections of respectively two irreducible components, whose
pre-images are two (possibly equal) singletons. Then one constructs an edge between
the vertices belonging to these two singletons. One takes the length of this edge to
be its associated length − log(ρ). Finally an orientation of the edge has to be chosen.
This choice is free but it is necessary to always choose the same orientation between
two vertices, such that the graph becomes antisymmetric. Since X is connected, Xk
is connected and hence the graph will be connected. By this, one gets a connected,
antisymmetric, weighted graph that will be denoted by Γ.

ΓX Γ

− log(ρ1)

− log(ρ2)

− log(ρ4)

− log(ρ3)

Figure 2.16: A connected, antisymmetric, weighted graph Γ associated to ΓX

While it is common to use Γ for both Γ and ΓX , in the following ΓX will mean the subset
of Xan whereas Γ denotes the graph corresponding to the skeleton ΓX .

Definition 2.6.8. One defines the retraction map

τ : Xan −→ ΓX

in the following way: If x is a vertex, τ(x) := x will be fixed. An open ball in the
semistable decomposition corresponds to a smooth point in Xk, which lies on an irre-
ducible component, which corresponds to a vertex in Xan. Then the open ball is called
adjacent to this vertex and any point in this open ball is mapped to this vertex by τ .
Finally, on the open annuli, the retraction map from Construction 2.6.4 will be taken.
The retractions of the open annuli are called open edges in ΓX .
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τ

Xan ΓX

Figure 2.17: Retraction of Xan
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3 Integration theories

The first step is to define in general what an integration theory in the non-archimedean
world should be. For this purpose, the most important properties from the complex
integral will be taken and required for p-adic integrals.

3.1 Complex integral

Before starting to define a p-adic integration theory, it is worth to repeat the complex
line integral.

Definition 3.1.1. Let X be a topological space. A path on X is defined to be a
continuous function

γ : [a, b] −→ X

with real numbers a ≤ b.

Definition 3.1.2. Let f : U −→ C be a continuous function on an open subset U ⊆ C,
and γ : [0, 1] −→ U be a path in U . Then∫

γ
f(z) dz :=

∫ 1

0
f(γ(t))γ′(t) dt

where the latter is calculated by splitting in the real and imaginary part, and applying
the real Lebesgue integral.
One defines the complex line integral for general differential one-forms by covering the
path with open balls, and applying the Poincaré lemma, which says that every closed
differential one-form is exact on an open ball.

Lemma 3.1.3. Let, in the definition above, U be an open ball and ω = dF with F
holomorphic on U . Then ∫

γ
ω = F (γ(1))− F (γ(0)).

Proof. ∫
γ
ω =

∫
γ

dF =

∫
γ

dF

dz
dz =

∫ 1

0
F ′ (γ(t)) γ′(t) dt

=

∫ 1

0

(
d

dt
F (γ(t))

)
dt = F (γ(1))− F (γ(0))
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Lemma 3.1.4.
∫
γ ω only depends on the fixed end-point homotopy class of γ.

Proof. Cauchy’s integral theorem

Remark 3.1.5. It is clear that, if one can concatenate two paths, the integral of the
concatenation is equal to the sum of the two integrals of the single paths. Furthermore
the line integral is linear in ω, which follows directly from the definition.

3.2 p-adic integration theories

The goal is to maintain these properties of the complex line integral also for the p-adic
integral.

Definition 3.2.1. Let X be a smooth Cp-analytic space, and let P(X) be the set of
paths γ : [0, 1] −→ X with endings in X(Cp). An integration theory on X is a map∫

: P(X)× Z1
dR(X) −→ Cp

such that:

(i) If U ⊆ X is an open subdomain isomorphic to an open ball, and ω = df with f
analytic on U , then ∫

γ
ω = f(γ(1))− f(γ(0))

for all γ : [0, 1] −→ U .
(ii)

∫
γ ω only depends on the fixed end point homotopy class of γ.

(iii) If γ1, γ2 ∈ P(X) and γ2(0) = γ1(1), then∫
γ1∗γ2

ω =

∫
γ1

ω +

∫
γ2

ω,

where γ1 ∗ γ2 is the concatenation of the two paths.
(iv) ω 7−→

∫
γ ω is linear in ω for a fixed γ.

Remark 3.2.2. A priori this is just a definition and one does not know whether such an
integration theory in the non-archimedean world actually exists. Even if an integration
theory exists, it does not have to be unique, as a path in a smooth Cp-analytic space in
general cannot be covered by open balls.
Therefore in the following two chapters, two integration theories are going to be intro-
duced. Subsequently, they will be compared in the last chapter.
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4 p-adic abelian integral

The start will be done with an approach that uses p-adic Lie theory. It was treated by
Yuri G. Zarhin in great generality and extended by Pierre Colmez. Its main feature is
that it totally omits using paths.

4.1 p-adic abelian logarithm

Let K be a complete subfield of Cp, and A an abelian variety over K.

Theorem 4.1.1. There exists a unique homomorphism of K-Lie groups

logA : A(K) −→ Lie(A)

such that d logA : Lie(A) −→ Lie(A) is the identity. Lie(A) is the short notation of
Lie(A(K)).

In order to prove this theorem, firstly the following theory is needed:

Theorem 4.1.2. Suppose A is an abelian variety over Cp and H is an open subgroup
in the canonical topology of A(Cp) where we consider A(Cp) as a Cp-Lie group and take
the topology of the underlying Cp-analytic manifold. Then A(Cp)/H is a torsion group.

Proof. Let x ∈ A(Cp). The goal is to find an n ∈ N\{0} such that nx ∈ H.

Step 1: Find an n1 ∈ N\{0} such that n1x ∈ A0(Cp).

Corollary 2.4.6 delivers the short exact sequence

0 A0(Cp) E(Cp) NQ 0.
trop

This gives the isomorphism

E(Cp)/A0(Cp) ∼= NQ. (4.1)

Furthermore one has the short exact sequence from Construction 2.4.2

0 M ′ Ean Aan 0,π

whereM ′ is a discrete subgroup of Ean(Cp). Hence one gets isomorphisms Ean/M ′ ∼= Aan

and Ean(Cp)/M ′ ∼= Aan(Cp) that can be written as

E(Cp)/M ′ ∼= A(Cp). (4.2)
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A0 injects into A, that means it has trivial intersection with M ′. Choose a basis for N
and denote its rank by r. Since trop(M ′) is a full-rank lattice in NQ, the quotient of
(4.1) by M ′ is

E(Cp)/M ′

A0(Cp)/(M ′ ∩A0(Cp))
∼= (Q/Z)r.

The left side can be written as

E(Cp)/M ′

A0(Cp)/(M ′ ∩A0(Cp))
=
E(Cp)/M ′

A0(Cp)/0
(4.2)∼= A(Cp)/A0(Cp)

which delivers the isomorphism

A(Cp)/A0(Cp) ∼= (Q/Z)r.

Since (Q/Z)r is torsion, the same holds for A(Cp)/A0(Cp) and there exists an n1 ∈ N\{0}
such that n1x ∈ A0(Cp).

Step 2: Find an n2 ∈ N\{0} such that n2(n1x) ∈ A0(Cp).

The model of A (see Construction 2.4.1 for more details) delivers a reduction map

red : A0 = (Â)η −→ (Â)s

with A0 = (Â)η, which may be restricted to Cp-rational points:

red : A0(Cp) −→ (Â)s

The kernel red−1(0) of this reduction map is a subgroup of A0(Cp) and a Cp-analytic
domain that is isomorphic to the open ball of radius 1,

red−1(0) ∼=
{

(z1, ..., zr)|zi ∈ Cp
}
, (4.3)

which corresponds to A0(Cp).

A0(Fp) = A0(Cp/Cp) = A0(Cp)/A0(Cp) = A0(Cp)/A0(Cp)

is torsion, as any number z ∈ Fp =
⋃
n∈N\{0} Fpn is contained in the finite field Fpn for a

certain n ∈ N\{0}, meaning that z is finite. This means that there exists an n2 ∈ N\{0}
such that n2(n1x) ∈ A0(Cp).

Step 3: Find an n3 ∈ N\{0} such that n3(n2(n1x)) ∈ H.

n2(n1x) ∈ A0(Cp) can be identified with an element from
{

(z1, ..., zr)|zi ∈ Cp
}

by (4.3).
The aim is to show that the multiplication with the number p is a contraction on A0(Cp).
Note that A0 is a formal group, and hence A0(Cp) is an r-dimensional formal group over
the ring Cp, as Cp ⊆ Cp. With the definition of an r-dimensional formal group over
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a ring R in section II.9.1, [Haz78], one gets for the corresponding formal group law F ,
which always comes along with a formal group, the following structure

F : A0(Cp)×A0(Cp) −→ A0(Cp)

(x, y) 7−→

 F1(x, y)
.

Fr(x, y)


with

x =

 x1

.
xr

 , y =

 y1

.
yr


and xi, yi ∈ Cp ⊆ Cp for i = 1, ..., r. In this law, Fi(x, y) are power series from Cp[[xi, yi]]
and fulfill the properties

(i) Fi(x, Fi(y, z)) = Fi(Fi(x, y), z) and
(ii) Fi(x, y) = xi + yi + terms of degree at least 2

for i = 1, ..., r.
Adding an element z ∈ A0(Cp) exactly p times gives

pz = F (z, F (z, F (...)))︸ ︷︷ ︸
p−1 times

=


z1 + ...+ z1︸ ︷︷ ︸

p times

+ terms of degree at least 2

...
zr + ...+ zr︸ ︷︷ ︸

p times

+ terms of degree at least 2


=

 pz1 + terms of degree at least 2
...

pzr + terms of degree at least 2

 .

Apply this to z := n2(n1x) ∈
{

(z1, ..., zr)|zi ∈ Cp
}

. The entries of the vector pz have
the form

pzi + terms of degree at least 2 = pzi + a2z
2
i + a3z

3
i + ...

with ai ∈ Cp, that means |ai| ≤ 1. Hence∣∣pzi + a2z
2
i + a3z

3
i + ...

∣∣ ≤ max(|pzi|, |a2z
2
i |, |a3z

3
i |, ...).

|p| < 1 and |zi| < 1 deliver

max(|pzi|, |a2z
2
i |, |a3z

3
i |, ...) < |zi|
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for all i ∈ {1, ..., r}. Consequently the norm of pz must be smaller than the norm of z.
This means that the multiplication with p is a contraction on A0(Cp), which delivers the
convergence

pmz −−−−−→
m→+∞

0.

Since H is an open subgroup containing 0, there exists an m0 ∈ N such that pm0z ∈ H.
Define n3 := pm0 ∈ N. Then it follows n3z = n3(n2(n1x)) ∈ H.

Conclusion:

Finally state n := n1n2n3 and get nx ∈ H. This means A(Cp)/H is a torsion group.

H

A0(Cp)

A(Cp)

A0(C◦◦p )

0

Figure 4.1: Venn diagram of the setting

Example 4.1.3. The proof of Theorem 4.1.2 is quite abstract. For this reason, an
example in the one dimensional case is given here. More precisely, A is an elliptic curve
with bad reduction, meaning that there exists q ∈ Cp, 0 < |q| < 1 such that

A(Cp) ∼= C×p /qZ.

This delivers immediately the short exact sequence

0 qZ C×p C×p /qZ 0.π

Obviously

0 {x ∈ Cp| val(x) = 0} C×p Q 0val

is another exact sequence. It holds

val(qZ) ⊆ val(C×p ) = Q
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and hence

Z · val(q) ⊆ Q.

Goal: For a given x ∈ A(Cp) find an n ∈ N\{0} such that xn ∈ H, where H is an open
subgroup.

Let x ∈ A(Cp) ∼= C×p /qZ. Choose a representative y ∈ C×p such that x = π(y).

Step 1: Find an n1 ∈ N\{0} such that xn1 = π(z), with val(z) = 0, z ∈ C×p .

Since val(C×p ) = Q, we can write val(q) = a
b and val(y) = c

d , with a, b, d ∈ N\{0}, c ∈ Z.
It is correct to assume a ∈ N\{0} instead of a ∈ Z because 0 < |q| < 1 and thus
val(q) > 0. This gives

ad · val(y) = ad · cd = ac = bc · ab = bc · val(q) ∈ Z · val(q)

and hence

val(yad) = ad · val(y) ∈ Z · val(q).

Consequently there exists an m ∈ Z such that

val(yad) = m · val(q).

It yields

val(yad) = val(qm)

and

val

(
yad

qm

)
= val(yad)− val(qm) = 0.

Define n1 := ad ∈ N\{0} and z := yad

qm ∈ C×p . Finally

xn1 = xad = π(y)ad = π
(
yad
)

= π

(
yad

qm

)
= π(z)

and val(z) = 0.

Step 2: Find an n2 ∈ N\{0} such that zn2 = 1 + u, with u ∈ Cp.

Consider the reduction map

Cp
red−−−−→ Cp/Cp ∼= Fp.

It holds

Cp\Cp = {x ∈ Cp| |x| = 1} red−−−−→
(
Cp/Cp

)× ∼= F×p
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and

F×p =
⋃

k∈N\{0}

F×
pk
.

Let s ∈ F×p . Then there exists a ks ∈ N such that s ∈ F×
pks

. As F×
pk

is finite for all k ∈ N,

it is torsion. Hence there exists an ms ∈ N\{0} such that sms = 1.

The z from step 1 has val(z) = 0, and thus |z| = 1. This gives red(z) ∈ F×p . It follows
that for red(z) there exists an n2 ∈ N\{0} such that

red (zn2) = (red(z))n2 = 1.

Lifting this equation gives

zn2 = 1 + u

with u ∈ Cp.

Step 3: Find an n3 ∈ N\{0} such that π ((1 + u)n3) ∈ H.

Claim 1: For v ∈ Cp it holds

|(1 + v)p − 1| ≤ |v| ·max (|p|, |v|) . (4.4)

Proof of the claim:

(1 + v)p − 1 =

(
p∑

k=0

(
p
k

)
vk

)
− 1 =

p∑
k=1

(
p
k

)
vk

and ∣∣∣∣∣
p∑

k=1

(
p
k

)
vk

∣∣∣∣∣ ≤ max
k=1,...,p

(∣∣∣∣( p
k

)∣∣∣∣ · |v|k)
≤ max

(
max

k=1,...,p−1

(
|p| · |v|k

)
, |v|p

)
≤ max

(
|p| · |v| , |v|2

)
≤ |v| ·max (|p|, |v|) ,

as p ≥ 2, |v| < 1 and p
∣∣∣ ( p

k

)
for k 6= 0, p.

Claim 2: For u ∈ Cp it holds∣∣(1 + u)p
m − 1

∣∣ ≤ |u| ·max (|p|, |u|)m . (4.5)

Proof of the claim: By induction.
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The case m = 0 is trivial. Assume that (4.5) holds for m ∈ N. Define

v := (1 + u)p
m − 1.

From (4.5) it follows |v| < 1. Then (4.5) becomes

|v| ≤ |u| ·max (|p|, |u|)m . (4.6)

As |p|, |u| < 1, it holds max (|p|, |u|) < 1 and hence

|v| ≤ |u|. (4.7)

We get ∣∣∣(1 + u)p
m+1 − 1

∣∣∣ =
∣∣∣((1 + u)p

m)p − 1
∣∣∣

= |(v + 1)p − 1|
(4.4)

≤ |v| ·max (|p|, |v|)
(4.6)

≤ |u| ·max (|p|, |u|)m ·max (|p|, |v|)
(4.7)

≤ |u| ·max (|p|, |u|)m+1 .

This proves Claim 2. With this one gets∣∣(1 + u)p
m − 1

∣∣ ≤ |u| ·max (|p|, |u|)m −−−−−→
m→+∞

0

and hence

(1 + u)p
m −−−−−→

m→+∞
1.

The lifting π−1(H) ⊆ C×p of H is an open subgroup of C×p , containing the neutral element
1. Hence there exists an m0 ∈ N\{0} such that

(1 + u)p
m0 ∈ π−1(H).

Defining n3 := pm0 delivers eventually

π ((1 + u)n3) ∈ H.

Conclusion:

H 3 π ((1 + u)n3) = π ((zn2)n3) = (π (z)n2)n3 = ((xn1)n2)n3 = xn1n2n3 = xn

with n := n1n2n3. Therefore A(Cp)/H is a torsion group.
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Lemma 4.1.4. Let G be a K-Lie group. There exists a fundamental system of open
neighbourhoods of 0 in G, consisting of K-Lie subgroups of G.

Proof. Proposition 1, Chapter III, §7.1, [Bou98].

Remark 4.1.5. Notice that Lemma 4.1.4 holds only for the non-archimedean case.

Proof. Consider a real connected Lie group G, for instance (R,+). Let H be an open
Lie subgroup. If h ∈ H, it holds hH ⊆ H because of the group law. For g /∈ H one has
gH ∩H = ∅, and hence

G\H =
⋃
g/∈H

gH,

which is an open set, as H, and thus gH, is open. This gives H is closed.
Eventually every open Lie subgroup has to be closed. In the p-adic case this is correct
for all the balls around 0 but in the real case this is only true for the whole Lie group
G.

Example 4.1.6. (i) {B+
ε (0)|ε > 0} is a fundamental system of open neighbourhoods

of 0 in (Qp,+), and consists of Qp-Lie subgroups.
(ii) {1 +B+

ε (0)|ε > 0} is a fundamental system of open neighbourhoods of 1 in (Q×p , ·),
and consists of Q×p -Lie subgroups.

(iii) {1 + aMn(Zp)|a ∈ pZp} is a fundamental system of open neighbourhoods of 1 in
(GLn(Qp), ·), and consists of Q×p -Lie subgroups.

Lemma 4.1.7. Let K be a complete subfield of Cp. Furthermore A is an abelian variety
of K and x ∈ A(K). Then there exists a sequence of positive integers (ni)i∈N such that

nix −−−−→
i→+∞

0.

Proof. One can assume K = Cp. Lemma 4.1.4 allows to work with open K-Lie subgroups
instead of open neighbourhoods of 0. The manifold structure of the K-Lie group A(K)
provides that A(K) is locally homeomorphic to Kn for some n ∈ N. Since Kn is a metric
space, A(K) accomplishes the first axiom of countability, for instance in 0. Because of
this, it is allowed to consider just countably many open neighbourhoods of 0, meaning
just countably many open K-Lie subgroups.
Let Hi be an open K-Lie subgroup of A(K). Then

[x] ∈ A(K)/Hi,

which is a torsion group because of Theorem 4.1.2. In this way it exists an ni ∈ N\{0}
such that

[nix] = ni[x] = 0.

That means nix ∈ Hi, and finally

nix −−−−→
i→+∞

0.
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Definition 4.1.8. Let G be a K-Lie group, U an open neighbourhood of 0 in Lie(G),
and

φ : U −→ G

an analytic mapping, such that φ(0) = 0 and T0(φ) = idLie(G). Furthermore for all
b ∈ Lie(G) it holds

φ((λ+ λ′)b) = φ(λb) · φ(λ′b)

for all |λ| and |λ′| sufficiently small.
Then φ is called an exponential mapping of G.

Lemma 4.1.9. Let G be a K-Lie group. There exists an exponential mapping φ of G
with the following properties:

(i) φ is defined on an open subgroup U of the additive group Lie(G);
(ii) φ(U) is an open subgroup of G and φ is an isomorphism of the analytic manifold

U onto the analytic manifold φ(U);
(iii) φ(nx) = φ(x)n for all x ∈ U and all n ∈ Z.

Proof. Proposition 3, Chapter III, §7.2, [Bou98].

Remark 4.1.10. In contrast to the real (complex) exponential mapping, the non-
archimedean counterpart is in general not defined everywhere. Furthermore for a K-Lie
group there can exist two different exponential mappings, whereas in the real (complex)
case exp is unique.

Example 4.1.11. Consider the Cp-Lie group C×p with its Lie algebra Cp. Then

exp : Cp −→ Cp

x 7−→
+∞∑
n=0

xn

n!

is an exponential mapping of Cp. But it does not converge everywhere. For example in
1 we have

exp(1) =
+∞∑
n=0

1

n!

and
∣∣ 1
n!

∣∣ ≥ 1, meaning that the series does not converge and exp(1) is not well-defined.

It just converges on the open ball around 0, with radius p
− 1
p−1 .

Definition 4.1.12. Let G be a group. Define

Gf :=

{
x ∈ G

∣∣∣∣∃(ni)i∈N, ni ∈ N\{0} s.t. nix −−−−→
i→+∞

0

}
.
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Example 4.1.13. For G = C×p it holds Gf = {x ∈ Cp| |x| = 1}.

Proof. “⊆”: Let x ∈ Gf , meaning that there exists a series (ni)i∈N with ni ∈ N\{0}
such that

xni −−−−→
i→+∞

1

which is equivalent to

|xni − 1| −−−−→
i→+∞

0. (4.8)

Suppose |x| 6= 1. Then |xni | = |x|ni 6= 1 for all i ∈ N. Hence

|xni − 1| = max(|xni |, |1|) ≥ 1,

which contradicts (4.8).

“⊇”: Let x ∈ Cp with |x| = 1. Then x ∈ Cp and one may reduce x to x 6= 0. Assume
firstly also x 6= 1. Then, by Lemma 5.1.4, there exists exactly one root of unity r ∈ x in
this residue class. Defining m := x− r yields |m| < 1, as r and x are in the same residue
class. Hence x can be written as

x = r +m = r(1 + m
r )

with
∣∣m
r

∣∣ = |m|
|r| = |m| < 1.

Since r is a root of unity, there exists a k ∈ N\{0} such that rk = 1. Furthermore∣∣∣(1 + m
r

)pi − 1
∣∣∣ ≤ |mr | ·max

(
|p|, |mr |

)i −−−−→
i→+∞

0

was proven in Step 3 of Example 4.1.3. It is easily shown that Claim 1 of Step 3 in
Example 4.1.3 is also true for the exponent kp instead of p. In the proof of claim 2 of
Step 3 in 4.1.3 it is just used that |p| < 1 and not anymore that p is a prime (this is
used in Claim 1). Since |kp| < 1, one may deduce∣∣∣(1 + m

r

)(kp)i − 1
∣∣∣ ≤ |mr | ·max

(
|kp|, |mr |

)i −−−−→
i→+∞

0.

For i 6= 0 it holds (
1 + m

r

)(kp)i
= 1 ·

(
1 + m

r

)(kp)i
=
(
rk
)ki−1pi

·
(
1 + m

r

)(kp)i
= r(kp)i ·

(
1 + m

r

)(kp)i
=
(
r ·
(
1 + m

r

))(kp)i
= x(kp)i
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Defining ni := (kp)i generates a sequence in N\{0} such that

|xni − 1| −−−−→
i→+∞

0.

In the case of x = 1, one takes r = 1 and k = 1. This shows x ∈ Gf .

Lemma 4.1.14. Let the characteristic p of the residue field of K be different from 0,
and G be a finite-dimensional K-Lie group. Then Gf is open in G.

Proof. Proposition 10 (i), Chapter III, §7.6, [Bou98].

Lemma 4.1.15. Let p 6= 0, and denote by G a finite dimensional K-Lie group. Then
there exists one and only one mapping

ψ : Gf −→ Lie(G)

with

(i) ψ(xn) = nψ(x), for all x ∈ Gf and n ∈ Z, and

(ii) it exists an open neighbourhood V ⊆ G of 0, such that ψ
∣∣∣
V

is the inverse mapping

of an injective exponential mapping.

Proof. Existence of ψ:

For a sufficiently small open subgroup U of Lie(G), by Lemma 4.1.9(i), there exists an
exponential mapping φ of G which is defined on U . Assume U so small that φ(U) ⊆ Gf .
Then there are open subgroups

e ∈ φ(U) ⊆ Gf ⊆ G

where e is the identity element.

Lie(G) G

φ

x

xm
e

e

U
φ(U)φ−1

φ−1(xm)

1
m
φ−1(xm)

Gf

ψ

Figure 4.2: Setting
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Let x ∈ Gf . By definition of Gf , there exists m ∈ N\{0} such that xm ∈ φ(U). As φ is
an isomorphism from U to φ(U), one gets a unique

φ−1(xm) ∈ U ⊆ Lie(G).

The element

1

m
φ−1(xm) ∈ Lie(G)

is independent of the choice of m ∈ N\{0}. To prove this, assume another m′ ∈ N\{0}
such that xm

′ ∈ φ(U). Then xmm
′ ∈ φ(U) and

m′φ−1(xm) = φ−1(xmm
′
) = mφ−1(xm

′
)

which is equivalent to

1

m
φ−1(xm) =

1

m′
φ−1(xm

′
).

Define

ψ(x) :=
1

m
φ−1(xm).

Property (i):

ψ(xn) =
1

m
φ−1((xn)m) =

1

m
φ−1(xnm) =

n

m
φ−1(xm) = nψ(x)

Property (ii): Clear with V = φ(U).

Uniqueness of ψ:

Let ψ′ be another mapping, fulfilling all the assumptions of Lemma 4.1.15. Let V and
V ′ be the open neighbourhoods, fulfilling property (ii) for ψ respectively ψ′. Denote the
inverse exponential mappings by φ respectively φ′ which are defined on ψ(V ) respectively
ψ′(V ′). φ and φ′ are both defined on ψ(V ) ∩ ψ(V ′) = ψ(V ∩ V ′). Then there exists an
open neighbourhood of e such that φ and φ′ coincide. Hence ψ and ψ′ coincide on an
open neighbourhood W of e, too.
Let x ∈ Gf . There exists n ∈ N\{0} such that xn ∈W . It follows

nψ(x) = ψ(xn) = ψ′(xn) = nψ′(x)

which means ψ = ψ′.

Example 4.1.16. In the following it will be tried to investigate ψ with respect to the
exponential mapping from Example 4.1.11.
Firstly, from Example 4.1.13 one knows

Gf = {x ∈ Cp| |x| = 1},
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hence

ψ : {x ∈ Cp| |x| = 1} −→ Cp.

The Mercator series

log(1 + x) =
+∞∑
n=1

(−1)n+1

n
xn,

that is defined on the residue class 1, is the inverse of exp from Example 4.1.11. Hence, by
property (ii) in Lemma 4.1.15, the map ψ must look like the Mercator series in an open
neighbourhood of 1. Requiring property (i) of Lemma 4.1.15, which is a special case of
the logarithm law, it is possible to construct uniquely a logarithm on {x ∈ Cp| |x| = 1}.
This process is described in Construction 5.1.5 for a general logarithm law. But, by
Lemma 4.1.15, this leads to the same unique logarithm

log : {x ∈ Cp| |x| = 1} −→ Cp.

Remark 4.1.17. Note that uniqueness would not be given anymore if we tried to
construct log on the whole Lie group G = C×p . This lack of uniqueness corresponds to
the branch of the logarithm that is described in Construction 5.1.6. Uniqueness, as e.g.
for the abelian logarithm in Theorem 4.1.1, is just given if G = Gf .

Corollary 4.1.18. The map ψ from Lemma 4.1.15 is analytic.

Proof. In a neighbourhood of x ∈ Gf , the map ψ is composed of the analytic mappings

x 7→ xm, y 7→ φ−1(y) and z 7→ 1

m
z, which are analytic.

Definition 4.1.19. The mapping ψ of Lemma 4.1.15 is called the logarithmic map-
ping of G and denoted by logG or simply log.

Lemma 4.1.20. Assume p 6= 0. Let x, y be two permutable elements of Gf . Then
xy ∈ Gf and

logG(xy) = logG(x) + logG(y).

Proof. If xn and yn tend to 0 for n −→ +∞, also (xy)n = xnyn tends to 0 for n −→ +∞.
Choose U to be an open subgroup of the additive group Lie(G) such that logG, restricted
to φ(U), is the inverse mapping of an exponential mapping φ on U . There exists an
n ∈ N\{0} such that xn, yn ∈ φ(U) because x, y ∈ Gf . Define

u := logG(xn) and v := logG(yn).

The property [u, v] = 0 follows from formula (2) in Proposition 4, Chapter III, §7.2,
[Bou98]. Hence one can use the Baker-Campbell-Hausdorff formula

exp(x+ y) = exp(x) exp(y) exp
(
− [x,y]

2

)
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to get

φ(λ(u+ v)) = φ(λu)φ(λv)

for |λ| sufficiently small. As ∣∣pi∣∣ −−−−→
i→+∞

0,

it holds, for i sufficiently large,

φ(pi(u+ v)) = φ(piu)φ(piv)

φ(pi(u+ v)) = φ(u)p
i
φ(v)p

i

pi(u+ v) = logG

(
φ(u)p

i
φ(v)p

i
)

pi (logG(xn) + logG(yn)) = logG

(
xnp

i
ynp

i
)

npi (logG(x) + logG(y)) = npi logG (xy)

and therefore

logG(xy) = logG(x) + logG(y)

as npi 6= 0.

The proof of Theorem 4.1.1 is remaining:

Proof. As A(K) is a finite-dimensional K-Lie group and p 6= 0, it is possible to apply
Lemma 4.1.15 and get a unique mapping

logA : A(K)f −→ Lie(A).

From Lemma 4.1.7 one gets A(K)f = A(K). With Corollary 4.1.18 and Lemma 4.1.20
it finally follows that

logA : A(K) −→ Lie(A)

is a unique homomorphism of K-Lie groups. The property d expA = id yields the same
for the logarithm, namely

d logA = id .

Remark 4.1.21. Note that the uniqueness of the logarithm on A(K) is just given
because of Theorem 4.1.2. Otherwise there would just be a unique logarithm on A(K)f ,
that might be quite a small subset, as we have seen in Example 4.1.13. This underlines
the importance of Theorem 4.1.2, which is an absolutely non-trivial result.
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4.2 p-adic abelian integrals on abelian varieties

Lemma 4.2.1. On an abelian variety any differential one-form is invariant, meaning

Ω1
A/K = Ω1

inv(A).

Proof. Proposition 1.5, [GM].

Lemma 4.2.2. One may identify

Ω1
A/K(A) = HomK(Lie(A),K).

Proof. As a consequence of Lemma 2.5.5, Lie(A) = T0(A) is dual to the fibre of 0 over
ΩA/K . As all ω ∈ ΩA/K are invariant (Lemma 4.2.1), they are completely determined
by this fibre, and it gives the result that Lie(A) is dual to ΩA/K .

Definition 4.2.3. For P ∈ A(K) and ω ∈ Ω1
A/K , it will be defined

Ab

∫ P

0
ω = 〈logA(P ), ω〉

where 〈 , 〉 is the dual pairing between Lie(A) and Ω1
A/K . Furthermore

Ab

∫ Q

P
ω := Ab

∫ Q

0
ω − Ab

∫ P

0
ω.

Ab
∫

is called the abelian integral on A.

Lemma 4.2.4. Let P,Q,R ∈ A(K). Then

Ab

∫ R

P
ω = Ab

∫ Q

P
ω + Ab

∫ R

Q
ω.

Proof.

Ab

∫ R

P
ω = Ab

∫ R

0
ω − Ab

∫ P

0
ω

= Ab

∫ Q

0
ω − Ab

∫ P

0
ω + Ab

∫ R

0
ω − Ab

∫ Q

0
ω

= Ab

∫ Q

P
ω + Ab

∫ R

Q
ω

Lemma 4.2.5. Let A,B be abelian varieties and f : A(K) −→ B(K) be a homomor-
phism of K-Lie groups. Then

Ab

∫ Q

P
f∗ω = Ab

∫ f(Q)

f(P )
ω

for all P,Q ∈ A(K) and ω ∈ Ω1
B/K .
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Proof. Prove first

(T0(f))∗ logB = logA,

where T0(f) is the tangent map from Definition 2.2.17, which is often denoted by df in
the literature.
Every K-Lie group fulfils the definition of a Lie group germ (Definition 5, Chapter III,
§1.10, [Bou98]) with its multiplication. This allows to apply Proposition 8, Chapter III,
§4.4, [Bou98], which states that the diagram

A(K) B(K)

Lie(A) Lie(B)

f

T0(f)

expA expB

commutes on a small open neighbourhood U ⊆ Lie(A) of 0.
There exist open neighbourhoods UA ⊆ A(K) and UB ⊆ B(K) of 0, sufficiently small,
such that

logA
∣∣
UA

: UA −→ Lie(A)

respectively

logB
∣∣
UB

: UB −→ Lie(B),

from Theorem 4.1.1, is the inverse mapping of expA respectively expB.
Since f and logA are homomorphisms of K-Lie groups, it holds f(0) = 0 and it is possible
to find an open neighbourhood U ′ ⊆ UA of 0, such that f(U ′) ⊆ UB and logA(U ′) ⊆ U .
The commutativity of the diagram in the beginning, delivers

f ◦ expA = expB ◦T0(f)

on U . This can be expanded to

logB ◦f ◦ expA ◦ logA = logB ◦ expB ◦T0(f) ◦ logA

logB ◦f = T0(f) ◦ logA,

which holds on U ′. The resulting equation may be written in the diagram

U ′ ⊆ UA UB

Lie(A) Lie(B),

f

logA logB

T0(f)

which commutes on the open neighbourhood U ′ ⊆ UA ⊆ A(K) of 0. In Lemma 4.1.15,
the map logA

∣∣
U ′

was extended to A(K) in the following way: Take an element x ∈ A(K).
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Then there exists an n ∈ N\{0} such that xn ∈ U ′. Finally, as it was already shown in
Lemma 4.1.15, the element x will be mapped to

1

n
exp−1

A (xn) ∈ Lie(A)

by logA. Consider the behaviour of xn ∈ U ′ under the following maps:

xn f(xn)

exp−1
A (xn) exp−1

B (f(xn))

f

logA logB

T0(f)

From the homomorphism property of f and Lemma 4.1.20 follows

exp−1
A (xn) =

(
exp−1

A (x)
)n

and

exp−1
B (f(xn)) = exp−1

B ((f(x))n) =
(
exp−1

B (f(x))
)n
.

Rewriting the commutative diagram gives

xn (f(x))n

(
exp−1

A (x)
)n (

exp−1
B (f(x))

)n
.

f

logA logB

T0(f)

After cancelling n and writing log instead of exp−1, when applied to x, it remains

x f(x)

logA(x) logB(f(x)),

f

logA logB

T0(f)

meaning that the diagram commutes for any x ∈ A(K), or, in other words,

A(K) B(K)

Lie(A) Lie(B)

f

logA logB

T0(f)

commutes on the whole K-Lie group A(K).
This yields the property

(T0(f))∗ logB = logA
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and finally

Ab

∫ P

0
f∗ω = 〈logA(P ), f∗ω〉

= 〈((T0(f))∗ logB) (P ), f∗ω〉
= 〈logB(f(P )), ω〉

= Ab

∫ f(P )

0
ω.

Proposition 4.2.6. The map

σ : A(K) −→ K

P 7−→ Ab

∫ P

0
ω

is a morphism of K-Lie groups.

Proof. That σ is a K-analytic function is clear.

σ(P +Q) = Ab

∫ P+Q

0
ω

= 〈logA(P +Q), ω〉
= 〈logA(P ) + logA(Q), ω〉
= 〈logA(P ), ω〉+ 〈logA(Q), ω〉
= σ(P ) + σ(Q)

as logA is a homomorphism of K-Lie groups. Therefore σ is a morphism of K-Lie
groups.

4.3 p-adic abelian integrals on curves

In this section a smooth, proper, connected Cp-curve X will be fixed. Let J be the
Jacobian of X, that is an abelian variety over Cp.

Definition 4.3.1. Fix a base point P0 ∈ X(Cp), and let ι : X −→ J be the Abel-Jacobi
map with respect to P0. Then its pullback ι∗ is an isomorphism between Ω1

J/Cp and

Ω1
X/Cp . For P,Q ∈ X(Cp) and ω ∈ Ω1

X/Cp , the abelian integral is defined by

Ab

∫ Q

P
ω := Ab

∫ ι(Q)

ι(P )
(ι∗)−1ω.
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Lemma 4.3.2. The abelian integral is independent of the choice of the base point P0 ∈
X(Cp).

Proof. A change of the base point P0 would create just a translation of ι∗. By Lemma
4.2.1, all the differential one-forms Ω1

J/Cp are invariant. Hence

(ι∗)−1ω ∈ Ω1
J/Cp

in Definition 4.3.1 is well-defined, which yields the claim.

Theorem 4.3.3. The abelian integral on curves satisfies the following properties:

(i) It is path-independent.
(ii) For P1, P2, P3 ∈ X(Cp) and ω ∈ Ω1

X/Cp(X), it holds

Ab

∫ P3

P1

ω = Ab

∫ P2

P1

ω + Ab

∫ P3

P2

ω.

(iii) For fixed P,Q ∈ X(Cp), the map ω 7−→Ab
∫ Q
P ω is Cp-linear in ω.

(iv) Within an open ball in the semistable decomposition (defined Definition 2.6.5),
Ab
∫ Q
P ω is calculated by formal antidifferentiation of ω.

Proof. (i) Ab
∫ Q
P ω makes no reference to a path, meaning that it is path-independent.

(ii) Follows from Lemma 4.2.4.
(iii) Let λ ∈ Cp. Then

λω 7−→Ab

∫ Q

P
λω = Ab

∫ ι(Q)

ι(P )
(ι∗)−1(λω)

= Ab

∫ ι(Q)

ι(P )
λ
(
(ι∗)−1ω

)
= λ · Ab

∫ ι(Q)

ι(P )
(ι∗)−1ω

= λ · Ab

∫ Q

P
ω

as ι∗ is a Cp-isomorphism. The linearity of the abelian integral for abelian varieties
comes from the bilinearity of the dual pairing in Definition 4.2.3.

(iv) Follows from Corollary 6.3.4 and the fact that the Berkovich-Coleman integral
(chapter 5) is calculated by formal antidifferentation on open balls.

Corollary 4.3.4. The abelian integral is an integration theory in the sense of Definition
3.2.1.

Proof. This is a direct consequence of Theorem 4.3.3.
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Remark 4.3.5. Notice that the path-independency is in general not given in the complex
case. For example on a torus (Figure 4.3) not every integral from a point P to Q is
independent from the path γ between these points.

P Q

Figure 4.3: From these three paths, three different integrals may arise
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5 Berkovich-Coleman integral

Robert F. Coleman constructed in the 1980s, starting with his paper Dilogarithms,
regulators and p-adic L-functions, [Col82], a theory of p-adic integration on rigid spaces
which admit an admissible covering by basic wide open subsets of P1. This was before
Vladimir G. Berkovich developed a more modern language in non-archimedean geometry,
named after him. For this reason the results of Coleman will be translated in Berkovich
language.

At a point when rigid analysis was almost completely developed, Berkovich formulated
the definition of Berkovich spaces and created therewith a totally new field of research
in non-archimedean geometry. With this new techniques, he generalized this p-adic
integration theory to Berkovich analytic spaces in his book Integration of One-forms
on P -adic analytic spaces, [Ber07]. This means that, when using the modern theory of
Berkovich, one is no longer restricted to the use of curves.

Let K be a field that is algebraically closed and complete with respect to a nontrivial,
non-archimedean valuation val : K −→ R ∪ {∞}.

5.1 Historical approach by Coleman

First the original ideas of Robert F. Coleman are described, using Berkovich theory. Let
X be a smooth, proper, connected Cp-curve, along with a semistable model X , as it was
already described in the introduction. This gives the following setting.

red

model X

special fibreanalytification of

the generic fibre

XkXan

Figure 5.1: Interplay of the model X and the curve X
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By considering the analytification Xan, one can omit the totally disconnected topology
of the curve X. On top of that, additional information about Xan is gained via the
model X , which creates an interplay of Xan and Xk via the reduction map. A result of
Berkovich and Bosch-Lütkebohmert (Theorem 3.2.4, [KRZ16a]) states that there is the
following 1:1 correspondence via the reduction map

Xan Xk
singleton (called vertex) generic point
open ball isomorphic to B(1)+ smooth point
open annulus isomorphic to S(ρ)+ double point

where

B(1)+ := {||.|| ∈ A1,an| ||T || < 1}

and

S(ρ)+ := {||.|| ∈ A1,an| ρ < ||T || < 1}

with ρ ∈ (0, 1). This subdivision of Xan, via the reduction map into the sets in the left
column, is called semistable decomposition (see Definition 2.6.5).

5.1.1 Branch of the logarithm

On the analytification Xan of the curve X it is possible to consider paths, as it is
path-connected, in contrast to X. The Berkovich-Coleman integration theory will be
restricted to paths with Cp-rational end points. These lie always at the ends of the
Berkovich trees. A simple case is the following:

Figure 5.2: Integration between two points within an open ball

Integrating between two points in the same open ball is rather easy, as one can apply
the Poincaré lemma. This means there exists an analytic function F with ω = dF and
it is possible to calculate the integral
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∫ Q

P
ω =

∫ Q

P
dF = F (Q)− F (P ).

If one wants to integrate between two points of different open balls in the semistable
decomposition, it is not possible to cover the path by open balls, because the vertex that
has to be passed does not lie in any open ball.

vertex

Figure 5.3: Integration between two points in different residue classes

Hence the differential one-form ω is in general not exact on the whole path. There exist
analytic functions F1 and F2, such that ω = dF1 and ω = dF2 on the single open balls,
which make it possible to calculate F1(P ) and F2(Q), but the difference F2(Q)− F1(P )
is not well-defined, as the integral functions F1 and F2 are just defined up to a constant.

Let us now turn our attention to the open annuli in the semistable decomposition:

vertex vertex

Figure 5.4: Integration between two points within an open annulus

As this is not a disc, it is not possible to apply the Poincaré lemma on the whole annulus.
True, on subsets which are open balls one could apply the Poincaré lemma again, but
the aim is to define the integration in general on the whole open annulus. The analytic
functions on S(ρ)+ are all infinite-tailed Laurent series f ∈ Cp[[T, T−1]] that converge
for all T ∈ Cp with ρ < |T | < 1. By Example 2.5.8, any differential one-form ω on S(ρ)+
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can be expanded as a Laurent series f ∈ Cp[[T, T−1]] that converges for all T ∈ Cp with
ρ < |T | < 1, meaning

ω = f(T ) dT =
+∞∑

n=−∞
anT

n dT.

By Example 2.5.9, one can formally integrate this differential one-form to F

ω = f(T ) dT = dF (T )

with

F (T ) =

+∞∑
n=−∞

an
n+ 1

Tn+1

only if a−1 = 0.
Hence it is necessary to find a way to integrate dT

T . In the complex setting, the integral
of this term is the logarithm, that is not even in C unique. But for the complex integral
it does not matter which branch of the logarithm is chosen, as long as the path is
containend in its domain.
To solve this problem, a logarithm for Cp has to be found.

Definition 5.1.1. The logarithm on B1(1) =
{
x ∈ Cp

∣∣|x− 1| < 1
}

is defined by the
Mercator series

log(1 + x) =
+∞∑
n=1

(−1)n+1

n
xn.

Lemma 5.1.2. The series from Definition 5.1.1 converges on

B1(1) =
{
x ∈ Cp

∣∣|x− 1| < 1
}
.

Proof. It holds ∣∣∣∣(−1)n+1

n
xn
∣∣∣∣ =
|xn|
|n|

=
1

|n|
· |x|n

with 1
|n| ≤ n for n ∈ N\{0} and |x| < 1. As the first factor grows at most linearly with

n, and the second factor reduces exponentially to 0, the limit is

lim
n→+∞

1

|n|
· |x|n = 0.

Thus the series converges on B1(1).
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Lemma 5.1.3. The formal derivative of log(x), defined by the Mercator series, is 1
x .

Proof. Formal differentiation for x ∈ B1(1) gives

d
dx log(x) = d

dx

+∞∑
n=1

(−1)n+1

n (x− 1)n

=
+∞∑
n=1

d
dx

(
(−1)n+1

n (x− 1)n
)

=

+∞∑
n=1

(−1)n+1(x− 1)n−1

=

+∞∑
n=0

(1− x)n

= 1
1−(1−x)

= 1
x .

The formal differentiate converges on B1(1), as |x − 1| < 1. In the end the geometric
series was used.

Lemma 5.1.4. In every residue class 6= 0, 1 of Fp there exists exactly one root of unity.

Proof. Existence: Let s ∈ Fp, with s 6= 0, 1 and s ∈ Cp. |s| < 1 would mean s ∈ Cp
and thus s = 0. Therefore it may be assumed |s| = 1, meaning that s ∈

(
Cp
)×

. Since

s is in Fp, it is algebraic over Fp, meaning that s is contained in a finite extension Fext

of Fp. As Fp is already finite, the extension must also be finite. The same holds for its
multiplicative group, which means that there exists an n ∈ N\{0} such that

sn = 1.

Take the smallest n. This n is unique, as, for any bigger extension, all powers of s still
remain in Fext. Thus there exists an m ∈ Cp such that

sn = 1 +m,

meaning that the polynomial equation

Tn − (1 +m) = 0 (5.1)

with the variable T is solvable over Cp, for instance with s. Any solution of (5.1) must
have absolute value 1 because |1+m| = 1. Hence the solutions α1, ..., αn are all contained
in Cp, and (5.1) decomposes into

(T − α1) · · · (T − αn) = 0 (5.2)
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as Cp is algebraically closed. Reducing (5.1) delivers the equation

Tn − 1 = 0 (5.3)

in Fp. A lift to Cp is

Tn − 1 = 0, (5.4)

which decomposes into

(T − β1) · · · (T − βn) = 0 (5.5)

with β1, ..., βn ∈ Cp. As the reductions of (5.1) and (5.4) are the same, the reductions of

their decompositions (5.2) and (5.5) must also coincide. Hence the αi and βj are equal
up to permutation for i, j ∈ {1, ..., n}.
Since s ∈ Fp solves (5.3), there exists an i ∈ {1, ..., n} such that s = αi. It has just
been shown that for any i ∈ {1, ..., n} there exists a j ∈ {1, ..., n} such that αi = βj .
Therefore

s = βj

where βj ∈ Cp solves (5.2), meaning βnj = 1. Hence βj is a root of unity in the residue
class of s. This shows existence.

Uniqueness: Consider the residue class s ∈ Fp with s 6= 0, 1 and s ∈
(
Cp
)×

. Assume
that there are two different roots of unity ζ1, ζ2 ∈ s, with ζn1

1 = 1 and ζn2
2 = 1 for

n1, n2 ∈ N\{0}. With n := n1 · n2 it may be calculated

ζn1 = ζn1·n2
1 = (ζn1

1 )n2 = 1n2 = 1

and

ζn2 = ζn1·n2
2 = (ζn2

2 )n1 = 1n1 = 1.

Therefore both are n-th roots of unity where n does not have to be minimal. Both solve
the polynomial equation

Tn − 1 = 0, (5.6)

meaning that (5.6) decomposes into

(T − ζ1) · (T − ζ2) · · · (T − ζn) = 0 (5.7)

with ζ3, ..., ζn ∈ Cp. The reduction of (5.6) and (5.7) delivers

Tn − 1 = 0 (5.8)
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and

(T − ζ1) · (T − ζ2) · · · (T − ζn) = 0 (5.9)

with ζ1 = ζ2 = s, meaning that (5.8) and (5.9) have multiple zeroes in Fp.
Let n = pk · n′ be the unique decomposition with p - n′ and k ∈ N. Then ζ1 and ζ2 can
be decomposed into

ζ1 = ζ ′1 · ζ ′′1 and ζ2 = ζ ′2 · ζ ′′2

such that ζ ′1 and ζ ′2 are pk-th and ζ ′′1 and ζ ′′2 are n′-th roots of unity. It holds ζ1
′ ∈ Fp,

hence there exists a k′ ∈ N\{0} such that ζ1
′ ∈ Fpk′ ⊆ Fpk·k′ . Since (ζ ′1)p

k

= 1, also

(ζ ′1)p
k·k′

= 1. Considering its reduction, which is contained in Fpk·k′ , gives

(
ζ1
′
)pk·k′

= 1.

The Frobenius automorphism x 7−→ xp
k·k′

, which is the identity on Fpk·k′ , delivers

(
ζ1
′
)pk·k′

= ζ1
′
.

Hence ζ1
′
= 1 which holds for ζ2

′
as well. This yields

ζ1 = ζ1
′ · ζ1

′′
= ζ1

′′
and ζ2 = ζ2

′ · ζ2
′′

= ζ2
′′
.

Therefore one may consider the equations (5.8) and (5.9) for n = n′. Then (5.8) cannot
have multiple zeroes as the formal derivative

n′T = 0

only has 0 as a zero. Its reason is that n′ 6= 0 for p - n′. Therefore ζ1
′′ 6= ζ2

′′
and

consequently ζ1 6= ζ2, which contradicts ζ1, ζ2 ∈ s. This shows uniqueness. Finally in
any residue class 6= 0, 1 of Fp there exists exactly one root of unity.

Construction 5.1.5. The goal is to extend the definition of the logarithm uniquely to(
Cp
)×

=
{
x ∈ Cp

∣∣|x| = 1
}
.

B1(1) = 1 + Cp = 1 +
{
x ∈ Cp

∣∣|x| < 1
}

is a subset of
(
Cp
)×

, as for m ∈ Cp holds

|1 +m| = max (|1| , |m|) = 1.

Therefore the term extension is justified.
The aim is to define the logarithm for an arbitrary s ∈

(
Cp
)×

, meaning that it holds
already s 6= 0. Assume furthermore s 6= 1, as the logarithm is already defined for this
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residue class. By Lemma 5.1.4 there exists a unique root of unity r ∈ s with the described
properties. Defining

m := s− r

gives |m| < 1, as r and s are in the same residue class. By requiring the logarithm law

log(a · b) = log(a) + log(b)

also for the p-adic logarithm, one can extend log to
(
Cp
)×

:

log(s) = log(r +m)

= log
(
r
(
1 + m

r

))
:= log(r) + log

(
1 + m

r

)
The expected logarithm law delivers

n · log(r) = log(rn) = log(1) = 0,

which means log(r) = 0. Besides log
(
1 + m

r

)
is already well-defined by the Mercator

series as
∣∣m
r

∣∣ = |m|
|r| = |m| < 1.

After all, a unique p-adic logarithm is defined on
(
Cp
)×

.

Construction 5.1.6. The next goal is to extend this logarithm to C×p . Let c ∈ C×p . It
can be uniquely written as

c = pxu

with x = val(c) ∈ Q and u ∈
(
Cp
)×

. If, for a logarithm

Log : C×p −→ Cp,

again the logarithm law should hold, one gets

Log(c) = Log(pxu)

= Log(px) + Log(u)

= x · Log(p) + log(u),

as u ∈
(
Cp
)×

and the logarithm is well-defined on
(
Cp
)×

. For Log(p), a value from Cp
has to be chosen.

Lemma 5.1.7. After choosing a value Log(p) ∈ Cp, the map

Log : C×p −→ Cp

is well-defined and extends log.
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Proof. The decomposition c = pxu is unique, as x = val(c) is unique. Thus

Log(c) := x · Log(p) + log(u)

is well-defined.
If c ∈

(
Cp
)×

, we have x = val(c) = 0. Hence c = p0u = u and

Log(c) = 0 · Log(p) + log(u) = log(c).

This leads to the following definition:

Definition 5.1.8. A branch of the logarithm is a group homomorphism

Log : C×p −→ Cp

that restricts to log on
(
Cp
)×

.

Remark 5.1.9. Similar to the complex case, this p-adic logarithm is not unique. There
are infinitely many branches of this logarithm, namely for any choice of Log(p) ∈ Cp.
As in the complex case it is only important to work all time with the same branch and
do not change it within one integral. Therefore one has to choose a certain branch of
the logarithm in the beginning and fix it.

Lemma 5.1.10. Log is analytic on B|x|(x) for all x ∈ C×p .

Proof. Fix x ∈ C×p . Then

Log(x · z) = Log(x) + Log(z)

is analytic as a function of z on B1(1). Hence Log is analytic on xB1(1) = B|x|(x).

Theorem 5.1.11. d Log(z) = dz
z on C×p by formal derivation.

Proof. Fix x ∈ C×p . The group homomorphism Log will be derivated in the neighbour-
hood B|x|(x) of x. Consider Log as a function of z.

d Log(z) = d Log
(
x · zx

)
= d Log(x) + d Log

(
z
x

)
= 0 + d log

(
z
x

)
=

1
z
x

d
(
z
x

)
=

1
z
x

1
x dz

=
dz

z
.

As z
x ∈ B1(1), it was possible to use Lemma 5.1.3.
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Remark 5.1.12. Berkovich extended this branch of the logarithm to

Gan
m = Spec(Cp[T, T−1])an

without its skeleton. See Lemma 1.4.1 (ii), [Ber07]. As any open annulus in the
semistable decomposition is a subset of Gan

m , one has an antiderivative of dT
T on any

open annulus without its skeleton.

Remark 5.1.13. With Theorem 5.1.11 it is possible to formally antidifferentiate any
Laurent series on C×p . Due to Remark 5.1.12 one could define a p-adic integration theory
that works on open annuli. This is already more powerful than just integrating on open
balls. But still it is not possible to integrate between Cp-points in different open annuli or
different open balls that are not contained in an open annulus. For this reason Coleman
covered the curve by so called basic wide opens, which he defined using rigid analysis.
The following section is describing this, using the more modern language of Berkovich.

5.1.2 Basic wide open subdomains

Take the same assumptions as in the previous section.

Remark 5.1.14. In section 5.1.1 it has already been noted that the main problem lies
in passing the vertices in the analytification Xan. The first problem focused on will be
passing a single vertex. An example of such a path is sketched in the following image:

Figure 5.5: A path passing a vertex
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Again one could integrate any differential one-form ω on the annulus of the small green
point and on the annulus of the small red point. This results in two antiderivatives F1

and F2, which are uniquely defined up to a constant. Hence the difference∫ Q

P
ω = F2(Q)− F1(P )

is again not well-defined. But, in the 1980s, Coleman found a way to integrate ω on
both annuli simultaneously such that the above difference becomes well-defined. This
only works if both annuli are adjacent to the same vertex. For this reason he defined
basic wide open subdomains, which may be considered as an open neighbourhood of a
vertex in Xan.

Definition 5.1.15. Let ζ ∈ Xan be a vertex and Iζ be the index set of all open edges
ei adjacent to ζ. For each open edge ei, adjacent to ζ, e′i is an open interval contained
in ei whose length is contained in val(C×p ) = Q. Furthermore e′i has to be adjacent to ζ.
Then an open star neighbourhood of ζ is defined as the union

Sζ = {ζ} ∪
⋃
i∈Iζ

e′i.

Definition 5.1.16. The pre-image of Sζ under the retraction map τ is called a basic
wide open subdomain Uζ of Xan.

Remark 5.1.17. In this paper it is sufficient to consider e′i = ei in Definition 5.1.15.
Hence a basic wide open subdomain becomes the union of the vertex ζ and all the open
annuli and open balls adjacent to ζ. Furthermore it is simply-connected because no
loops are contained anymore. For the following it will be always presumed e′i = ei for
basic wide open subdomains if inequality is not explicitely allowed.

Figure 5.6: Basic wide open subdomain of the red vertex
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Definition 5.1.18. For a basic wide open subdomain Uζ , the vertex ζ is called the
central point of Uζ and τ−1 (ζ) is called the underlying affinoid of Uζ .

Figure 5.7: Underlying affinoid of the basic wide open subdomain in Figure 5.6

Remark 5.1.19. Consider an irreducible component in Xk (for example the red one
in Figure 5.1). It contains one generic point, whose pre-image under reduction is a
vertex ζ, smooth points, whose pre-images are open balls adjacent to ζ, and double
points, whose pre-images are open annuli adjacent to ζ. Hence the pre-image of an
irreducible component in Xk under reduction is a basic wide open subdomain of Xan, in
this example, the one from Figure 5.6.

Remark 5.1.20. Denote by OUζ the structure sheaf of the basic wide open subdomain
Uζ . Let B be an open ball and S be an open annulus, with associated length − log(ρ),
adjacent to ζ. Then OUζ (B) is given as all power series with radius of convergence 1,
and OUζ (S) is given as all Laurent series that converge for ρ < |T | < 1.

Definition 5.1.21. Let X be a K-analytic space and x ∈ X. As in section 9.1, [Ber90],

s(x) is defined to be the transcendence degree of H̃(x) over k = K̃. Furthermore t(x) is
defined as the dimension of the Q-vector space

√
|H(x)∗|/

√
|K∗|. For the definition of

the field H(x) see for Remark 1.2.2, [Ber90].
Eventually Xst is defined to be the set of all points x ∈ X with s(x) = t(x) = 0. For a
subset V ⊆ X, one sets Vst := V ∩Xst.

Remark 5.1.22. By the first paragraph of the introduction of [Ber07], if X is a smooth
K-analytic space, x ∈ Xst is equivalent to the property that x admits a fundamental
system of étale neighbourhoods isomorphic to an open ball. An étale neighbourhood of
x is an open subset U with x ∈ U such that U ↪→ X is an étale morphism.
This equivalence holds also for an open subset V ⊆ X instead of the whole space X
because, if x ∈ V has a fundamental system of étale neighbourhoods isomorphic to an
open ball in X, it has a fundamental system of étale neighbourhoods isomorphic to an
open ball in V , too. Note that this, in general, does not hold for a non-open subset V .

Lemma 5.1.23. Let x ∈
(
A1
K

)an
. Berkovich classified in 1.4.4, [Ber90] the points of(

A1
K

)an
in four different types. For them the following properties hold:

(i) If x is of type (1), then s(x) = 0 and t(x) = 0.
(ii) If x is of type (2), then s(x) = 1 and t(x) = 0.

(iii) If x is of type (3), then s(x) = 0 and t(x) = 1.
(iv) If x is of type (4), then s(x) = 0 and t(x) = 0.
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Therefore just the points of type (1) and (4) are in
(
A1
K

)an

st
. These are exactly the

end points of the Berkovich tree, which is the visualization of
(
A1
K

)an
. Note that, in

harmony with Remark 5.1.22, the points of type (1) and (4) are the only ones that admit
a fundamental system of étale neighbourhoods isomorphic to an open ball.

Proof. Section 2.2, [Ber07].

Remark 5.1.24. Let X be a smooth K-analytic curve. By Lemma 2.1.15, for any
x ∈ X there exists an open neighbourhood x ∈ U ⊆ X such that there exists an étale
morphism

U −→
(
A1
K

)an
.

The type of the image of x under this étale morphism is said to be the type of x. By the
last paragraph before Proposition 2.2.1 in section 2.2, [Ber07], the type of the image of
x does not depend on the choice of the étale morphism and is accordingly well-defined.

Lemma 5.1.25. Let X be a smooth, proper, connected Cp-curve. Then Xan
st consists

exactly of all the points of type (1) and (4) in Xan. These are the end points in the
visualization of Xan.

Proof. Let x ∈ Xan.
Case 1: x is in an open ball B of the semistable decomposition.

Then

B ∼= B(1)+ ⊆
(
A1
K

)an

and one may apply Lemma 5.1.23. This means Bst is exactly the set of the points of
type (1) and (4) in B.

Case 2: x is in an open annulus S of the semistable decomposition.

Apply Lemma 5.1.23 to

S ∼= S(ρ)+ ⊆
(
A1
K

)an

for some ρ ∈ |C×p |. As a consequence, Sst is exactly the set of the points of type (1) and
(4) in S.

Case 3: x is a vertex in the semistable decomposition.

The vertex is by definition (preamble of section 1.2, [BPR13]) a point of type (2).

Remark 5.1.26. The equivalence of Remark 5.1.22 holds also for an underlying affinoid
Y of a basic wide open subdomain, even though Y is generally not open. Y consists
of one vertex ζ and open balls adjacent to ζ. Let X be the corresponding curve. The
vertex ζ does not fulfill the requirements to be in Yst because it is not in Xan

st either.
The remaining set Y \ {ζ} is an open subset, for which Remark 5.1.22 can be applied.
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Definition 5.1.27. A naive analytic function f on an open subset U ⊆ Xan is defined
to be a map that allocates to every x ∈ Ust a value f(x) ∈ H(x) such that there is an
open neighbourhood V ⊆ Ust of x with f = g on V for a g ∈ OU (V ). The set of naive
analytic functions on U is denoted by N(U). Furthermore, the sheaf of OXan-algebras is
defined by the correspondence

U 7−→ N(U)

and denoted by NXan .

Remark 5.1.28. It is convenient to call the functions of OU (U) analytic functions on U .
Then naive analytic functions are the Berkovich analogue of locally analytic functions.

Example 5.1.29. Any branch of the logarithm on an open annulus is a naive analytic
function.

Definition 5.1.30. Let U be a connected open subset of Xan and M be a subset of
N(U). It is said that M satisfies the uniqueness principle on U if the following
property holds:
If two elements in M coincide on a non-empty open subset of U(Cp), they coincide on
the whole U(Cp).

Example 5.1.31. OXan(U) satisfies the uniqueness principle.

Definition 5.1.32. Let U be an open subset of Xan and define

A(U) := OXan(Ust).

This definition can be extended to an underlying affinoid Y of a basic wide open subdo-
main Uζ because Y \{ζ} is a union of open balls (see for Remark 5.1.26).

Definition 5.1.33. Let U be an open subset of Xan and Log a fixed branch of the
logarithm. Then it will be defined

ALog(U) := A(U) [{Log(f) : f ∈ A(U)∗}] .

Lemma 5.1.34. Let U be an open annulus in Xan. Then

ALog(U) = A(U) [Log(z)] .

Proof. Corollary 2.2.a, [Col82].

Remark 5.1.35. In Remark 5.1.13 it was written that it is already possible to formally
antidifferentiate Laurent series on C×p by using Log. For this reason, the set A(U) was
extended by Log and afterwards denoted by ALog(U). It would be nice if this bigger
class of functions could be antidifferentiated, too. Indeed, this can be done.

Theorem 5.1.36. Let U be an open annulus. Then it holds

ALog(U) dz = dALog(U).
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Proof. “⊇” is clear.
“⊆”: Let ω ∈ ALog(U) dz. Then it can be written as

ω =
n∑
i=0

gi(z) Logi(z) dz

for an n ∈ N and gi ∈ A(U). The claim will be shown by induction:
For n = 0 it holds

ω = g0(z) dz

and hence ω ∈ A(U) dz. If the coefficient of dz
z is zero, one can formally antidifferentiate

g0 and gets ω ∈ dA(U). If not, the property

dz

z
= d Log(z)

yields at least ω ∈ dALog(U).
Suppose now that the claim is true for n ∈ N.
Consider

ω =
n+1∑
i=0

gi(z) Logi(z) dz.

Denote the coefficient of 1
z in gn+1(z) by c. Define

g′n+1(z) := gn+1(z)− c1
z .

Then one can formally antidifferentiate g′n+1(z) and gets a function h ∈ A(U) with

dh = g′n+1(z) dz.

This function allows to write

d
(

c
n+2 Logn+2(z) + hLogn+1(z)

)
− (n+ 1)h1

z Logn(z) dz

= cLogn+1(z)1
z dz + Logn+1(z) dh

+ h · (n+ 1) Logn(z)1
z dz − (n+ 1)h1

z Logn(z) dz

= cLogn+1(z)1
z dz + Logn+1(z)g′n+1(z) dz

= cLogn+1(z)1
z dz + Logn+1(z)

(
gn+1(z)− c1

z

)
dz

= cLogn+1(z)1
z dz + gn+1(z) Logn+1(z) dz − c1

z Logn+1(z) dz

= gn+1(z) Logn+1(z) dz

As the claim holds for n ∈ N and (n+ 1)h1
z is in A(U), one has

−(n+ 1)h1
z Logn(z) dz ∈ dALog(U).
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Since

c
n+2 Logn+2(z) + hLogn+1(z) ∈ ALog(U),

it follows

gn+1(z) Logn+1(z) dz

= d
(

c
n+2 Logn+2(z) + hLogn+1(z)

)
− (n+ 1)h1

z Logn(z) dz ∈ dALog(U).

Hence

ω ∈ dALog(U)

for n+ 1. This proves the theorem by induction.

5.1.3 Logarithmic F -crystals

With section 5.1.2 one is now able to integrate not just analytic functions on open annuli,
but also the bigger class of functions ALog(U), which is a subset of the naive analytic
functions on an open annulus U .
Still, the problem passing a vertex is not tackled. Doing this is the goal of this section.
It will be continued with the same assumptions from before.

Definition 5.1.37. Suppose M ⊆ N(Uζ) is an A(Uζ)-module. If there is an inclusion

i : W ↪→ Uζ

of a Cp-analytic space W into Uζ , it will be defined

M(W ) := i∗M

and

ΩM (W ) := i∗ΩM ,

where

ΩM = M ⊗A(Uζ) N(Uζ) dz.

For W = Y or W = S, where Y is the underlying affinoid of the basic wide open
subdomain Uζ and S is an open annulus adjacent to ζ, it follows that

M(W ) = M ⊗A(Uζ) A(W )

and

ΩM (W ) = M(W )⊗A(W ) A(W ) dz.
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Remark 5.1.38. Robert F. Coleman managed to construct a so called logarithmic F -
crystal, which is an A(Uζ)-module M ⊆ N(Uζ), such that A(Uζ) ⊆ M and some other
conditions hold. Its definition in rigid analysis is written in the beginning of section IV,
[Col82].
A logarithmic F -crystal M has some nice properties, among others

(i) dM ⊆ ΩM

(ii) M(Y ) ⊆ A(Y ), M(S) ⊆ ALog(S) for all open annuli S of the semistable decompo-
sition that are in Uζ .

Theorem 5.1.39. Let Uζ be a basic wide open subdomain of Xan. Then A(Uζ) is a
logarithmic F -crystal.

Proof. Theorem 5.1, [Col82].

Theorem 5.1.40. There exists a unique minimal logarithmic F -crystal M ′ on Uζ such
that M ⊆M ′ and

ΩM ⊆ dM ′.

This means that M ′ delivers antiderivatives for all functions of M .

Proof. Theorem 4.3, [Col82].

Definition 5.1.41. Applying Theorem 5.1.40 to the logarithmic F -crystal A(Uζ), it can
be defined recursively

A0(Uζ) := A(Uζ)

and

An(Uζ) := An−1(Uζ)
′

for n ∈ N\{0} where the prime denotes the unique logarithmic F -crystal from Theorem
5.1.40.
Furthermore we define

A∞(Uζ) :=
⋃
n∈N

An(Uζ).

Corollary 5.1.42. It holds

ΩA∞(Uζ)(Uζ) = dA∞(Uζ).

Proof. Follows directly from Remark 5.1.38, property (i) and Theorem 5.1.40.

Definition 5.1.43. A filtered K-algebra is defined as a commutative K-algebra L
with unity such that there is a sequence of K-vector subspaces

L0 ⊆ L1 ⊆ L2 ⊆ ...

with
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(i) Li · Lj ⊆ Li+j and
(ii) L =

⋃∞
i=0 L

i.

Let X be a smooth K-analytic space. Then a filtered OX-algebra is defined as a sheaf
of OX -algebras A with a sequence

A0 ⊆ A1 ⊆ A2 ⊆ ...

of OX -modules such that

(i) Ai · Aj ⊆ Ai+j and
(ii) A = lim−→A

i.

Remark 5.1.44. A∞(Uζ), which is a ring by Proposition 5.4, [Col82] and furthermore
a filtered A(Uζ)-algebra, is a really huge set of functions that delivers antiderivatives for
analytic functions on Uζ , their antiderivatives and so on. Consequently one can find for
any ω ∈ An−1(Uζ) dz an antiderivative in An(Uζ). But this may not be unique. In order
to tackle this problem, there is the following theorem.

Theorem 5.1.45. The set of functions An(Uζ) satisfies the uniqueness principle on Uζ .

Proof. Since Uζ ⊆ Xan is connected, applying Theorem 5.7, [Col82] gives the result.

Corollary 5.1.46. For ω = f(z) dz ∈ An−1(Uζ)dz and P,Q ∈ Uζ(Cp), the integral∫ Q

P
ω =

∫ Q

P
dF = F (Q)− F (P )

is well-defined, where F ∈ An(Uζ) is an antiderivative of f ∈ An−1(Uζ).

Proof. By Theorem 5.1.39 there exists an antiderivative F ∈ An(Uζ) of f ∈ An−1(Uζ)
which is not necessarily unique. Let F1, F2 ∈ An(Uζ) be two possible antiderivatives
of f , meaning dF1 = dF2 = ω. Any Cp-rational point on Uζ lies in an open ball (not
necessarily from the semistable decomposition), contained in Uζ , where one can apply
the Poincaré lemma. Write BP for the open ball that contains P and BQ for the open
ball that contains Q. Applying the Poincaré lemma, one knows that the antiderivatives
on BP respectively BQ are unique up to a constant in Cp. Hence it holds

F1 − F2 = a

on BP for an a ∈ Cp. The uniqueness principle (Theorem 5.1.45) provides F1 = F2 + a
on the Cp-rational points of the whole basic wide open subdomain Uζ(Cp) and especially
on BQ(Cp). Since ∫ Q

P
dF1 = F1(Q)− F1(P )

= (F2(Q) + a)− (F2(P ) + a)

= F2(Q)− F2(P )

=

∫ Q

P
dF2,
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the integral
∫ Q
P ω is well-defined for ω ∈ An−1(Uζ) dz.

Corollary 5.1.47. For ω = f(z) dz ∈ A∞(Uζ) dz and P,Q ∈ Uζ(Cp), the integral∫ Q

P
ω =

∫ Q

P
dF = F (Q)− F (P )

is well-defined, where F ∈ A∞(Uζ) is an antiderivative of f ∈ A∞(Uζ).

Proof. Follows directly from Corollary 5.1.46 for an n ∈ N big enough.

5.1.4 Historical integral by Coleman

After section 5.1.3 it is now possible to pass a vertex. But still, the integral is just
defined within a basic wide open subdomain. The goal of this section is to extend the
definition to the whole space Xan. Continue with the same assumptions as before.

Definition 5.1.48. Let Z be a topological space and

γ : [a, b] −→ Z

be a path on Z. A subdivision of the path γ is defined to be the set of a finite number
n ∈ N\{0} of paths

γi : [ai, bi] −→ Z

with i ∈ {1, ..., n} such that

(i) γi(bi) = γi+1(ai+1) for i ∈ {1, ..., n− 1},
(ii) γ1(a1) = γ(a) and γn(bn) = γ(b) and
(iii) the concatenation γ1 ∗ γ2 ∗ ... ∗ γn is equal to γ.

a ≤ b and ai ≤ bi for i ∈ {1, ..., n} are real numbers.

Lemma 5.1.49. Let X be a smooth, proper, connected Cp-curve, along with a semistable
model X , and V be the vertex set of the semistable decomposition of Xan. Furthermore,

γ : [0, 1] −→ Xan

is a path from a Cp-rational point P to a Cp-rational point Q.

Then there exists a subdivision of γ into n ∈ N\{0} paths

γi : [0, 1] −→ Xan

with the property that for any i ∈ {1, ..., n} there exists a vertex ζi ∈ V such that

Im(γi) ⊆ Uζi .
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Proof. Since any basic wide open subdomain Uζ ⊆ Xan is open, the pre-image

γ−1(Uζ) ⊆ [0, 1]

under the continuous function γ is an open subset, too. The analytification Xan of the
curve may be covered by the basic wide open subdomains Uζ with ζ ∈ V . Therefore,
[0, 1] may be covered by the pre-images γ−1(Uζ) with ζ ∈ V .

As γ−1(Uζ) ⊆ [0, 1] is open, the union

(−∞, 0) ∪ γ−1(Uζ) ∪ (1,+∞)

is an open subset of R. A subset of R is open if and only if it is the union of countably
many open intervals in R. Since (−∞, 0) ∪ γ−1(Uζ) ∪ (1,+∞) is open in R, this fact
can be applied to it. By restricting this set to [0, 1], the set γ−1(Uζ) is the union of
countably many open intervals in [0, 1]. This means that the pre-image γ−1(Uζ) ⊆ [0, 1]
can be written as

γ−1(Uζ) =
⋃
j∈N

Ij,ζ

where Ij,ζ is an open interval in [0, 1].

From the first and second paragraph it now follows that

[0, 1] =
⋃
ζ∈V

γ−1(Uζ) =
⋃
ζ∈V

⋃
j∈N

Ij,ζ ,

which means that
⋃
ζ∈V

⋃
j∈N Ij,ζ is an open cover of [0, 1]. The interval [0, 1] is compact

because it is closed and bounded. Therefore one can choose a finite subset of the open
intervals

{Ij,ζ}j∈N,ζ∈V

with the result that its union still covers [0, 1]. To sum up, we have a finite number of
open intervals Ij,ζ ⊆ [0, 1] that still covers [0, 1].

With that said, it is possible to choose a finite number of real numbers

0 = r0 < r1 < r2 < ... < rn−1 < rn = 1

with n ∈ N\{0}, such that for any i ∈ {1, ..., n} there exists an open interval Ij,ζ ⊆ [0, 1]
with

[ri−1, ri] ⊆ Ij,ζ .

This yields

γ([ri−1, ri]) ⊆ γ(Ij,ζ) ⊆ Uζ . (5.10)
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By defining

γi : [ri−1, ri] −→ Xan,

r 7−→ γ(r)

one gets continuous maps γi fulfilling the conditions of Definition 5.1.48. The property
Im(γi) ⊆ Uζ was shown in (5.10). Finally, by re-parametrization, one gets the searched-
for subdivision of γ.

Corollary 5.1.50. Let X be a smooth, proper, connected Cp-curve, along with a semistable
model X , and V be the vertex set of the semistable decomposition of Xan. Furthermore,

γ : [0, 1] −→ Xan

is a path from a Cp-rational point P to a Cp-rational point Q.
Then there exist an n ∈ N\{0} and paths

γi : [0, 1] −→ Xan

with i ∈ {1, ..., n} fulfilling the following properties:

(i) For any i ∈ {1, ..., n} there exists a vertex ζi ∈ V such that

Im(γi) ⊆ Uζi .

(ii) The path γ is homotopy equivalent to the concatenation γ1 ∗ γ2 ∗ ... ∗ γn.
(iii) The end points of the γi are Cp-rational.

Proof. At first one may assume ζi 6= ζi+1 for i ∈ {1, ..., n − 1} in Lemma 5.1.49 for the
following reason: If there exists a j ∈ {1, ..., n− 1} with ζj = ζj+1, one can concatenate
γj and γj+1 and redefine

γ′i :=


γi for i < j

γi ∗ γi+1 for i = j

γi+1 for i > j

for i ∈ {1, ..., n− 1}. This new subdivision also fulfils the property of Lemma 5.1.49 as

Im(γ′j) = Im(γj ∗ γj+1)

= Im(γj) ∪ Im(γj+1)

⊆ Uζj ∪ Uζj+1

= Uζj .

Let now γi be a subdivision fulfilling the property of Lemma 5.1.49 and the assumption
from above. Then, for i ∈ {1, ..., n− 1}, the point

Pi := γi(1) = γi+1(0)
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lies in the intersection of the two basic wide open subdomains Uζi and Uζi+1
because

γi(1) ∈ Im(γi) ⊆ Uζi

and

γi+1(0) ∈ Im(γi+1) ⊆ Uζi+1
.

A non-empty intersection of two different basic wide open subdomains is the disjoint
union of open annuli from the semistable decomposition. This means that the point Pi
lies in an open annulus

Ai ⊆ Uζi ∩ Uζi+1

of the semistable decomposition. Since any open annulus of the semistable decomposition
is isomorphic to S(ρ)+, with ρ ∈ |C×p |, it contains at least one Cp-rational point P ′i . Since
Ai is path-connected, there exist paths

γi,go : [0, 1] −→ Ai

and

γi,return : [0, 1] −→ Ai

for i ∈ {1, ..., n− 1}, such that

γi,go(0) = Pi = γi,return(1)

and

γi,go(1) = P ′i = γi,return(0).

The open annulus Ai is furthermore simply-connected and therefore the cycle

γi,go ∗ γi,return

is homotopy equivalent to 0.

The definition

γ′i :=


γi ∗ γi,go for i = 1

γi−1,return ∗ γi ∗ γi,go for 1 < i < n

γi−1,return ∗ γi for i = n.

fulfils the required properties:
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(i) For 1 < i < n it holds

Im(γ′i) = Im(γi−1,return ∗ γi ∗ γi,go)

= Im(γi−1,return) ∪ Im(γi) ∪ Im(γi,go)

⊆ Ai−1 ∪ Uζi ∪Ai
= Uζi .

The cases i = 1 and i = n follow by setting γ0,return := 0 and γn,go := 0.
(ii) Using the equality sign for homotopy equivalence, it follows that

γ′1 ∗ γ′2 ∗ ... ∗ γ′n
= (γ1 ∗ γ1,go) ∗ (γ1,return ∗ γ2 ∗ γ2,go) ∗ ... ∗ (γn−1,return ∗ γn)

= γ1 ∗ γ1,go ∗ γ1,return︸ ︷︷ ︸
=0

∗γ2 ∗ γ2,go ∗ ... ∗ γn−1,return ∗ γn

= γ1 ∗ γ2 ∗ ... ∗ γn
= γ.

(iii) The end points of the paths γ′i are P , Q and P ′i for i ∈ {1, ..., n− 1}. These are all
Cp-rational.

Definition 5.1.51. Let X be a smooth, proper, connected Cp-curve, along with a
semistable model X , and ω ∈ Ω1

X/Cp be a differential one-form on X. Furthermore

γ : [0, 1] −→ Xan

denotes a path from a Cp-rational point P to a Cp-rational point Q.
By Corollary 5.1.50 there exist paths

γi : [0, 1] −→ Xan

with i ∈ {1, ..., n} fulfilling the conditions listed in Corollary 5.1.50. Define

Ri := γi(1) = γi+1(0)

for i ∈ {1, ..., n− 1}, R0 := γ0(0) = P and Rn := γn(1) = Q.

Then the historical integral by Coleman is defined as∫
γ
ω :=

n∑
i=1

∫ Ri

Ri−1

ω

where
∫ Ri
Ri−1

ω is well-defined by Corollary 5.1.47.
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Theorem 5.1.52. The historical integral of Coleman is well-defined.

Proof. The case n = 1 is trivial. In the following it will be assumed n > 1.
For the proof of the theorem one has to show that the integral is independent from the
choice of the γi. Firstly show that, if γ is a null-homotopic path, for any set of paths

γi : [0, 1] −→ Xan

with i ∈ {1, ..., n}, n ∈ N\{0} fulfilling the conditions of Corollary 5.1.50 it holds∫
γ
ω =

n∑
i=1

∫ Ri

Ri−1

ω = 0.

Let γ be a null-homotopic path and the γi as above. Then one can assume that in any
open annulus of the semistable decomposition there do not lie two or more different
starting respectively end points of the γi: Let A be an open annulus of the semistable
decomposition and P, P ′ are two different starting respectively end points of the γi in
A. As in the proof of Corollary 5.1.50, there exist paths

γgo : [0, 1] −→ A

and

γreturn : [0, 1] −→ A

such that

γgo(0) = P = γreturn(1) (5.11)

and

γgo(1) = P ′ = γreturn(0). (5.12)

Since

γi,go ∗ γi,return

is homotopy equivalent to 0, one can transform any path γi with P as an end point into
γi ∗ γgo and any path γi+1 (or γ1 if i = n) with P as a starting point into γreturn ∗ γi+1.
Note that the concatenation of the γi is null-homotopic and therefore a cycle. This
modification does not change the result of the integral:
On an open annulus of the semistable decomposition any ω ∈ Ω1

X/Cp has an antideriva-
tive. Finally, by Corollary 5.1.47, the integration of ω along γgo is defined as∫ γgo(1)

γgo(0)
ω =

∫ γgo(1)

γgo(0)
dFgo

= Fgo(γgo(1))− Fgo(γgo(0))
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and the integration of ω along γreturn is defined as∫ γreturn(1)

γreturn(0)
ω =

∫ γreturn(1)

γreturn(0)
dFreturn

= Freturn(γreturn(1))− Freturn(γreturn(0))

where Fgo and Freturn are elements of ALog(A) with ω = dFgo and ω = dFreturn. Since
the antiderivatives differ just by a constant c ∈ Cp, one has

Fgo = Freturn + c

on A. This yields∫ γgo(1)

γgo(0)
ω +

∫ γreturn(1)

γreturn(0)
ω

=

∫ γgo(1)

γgo(0)
dFgo +

∫ γreturn(1)

γreturn(0)
dFreturn

= Fgo(γgo(1))− Fgo(γgo(0)) + Freturn(γreturn(1))− Freturn(γreturn(0))

= (Freturn + c)(γgo(1))− (Freturn + c)(γgo(0)) + Freturn(γreturn(1))− Freturn(γreturn(0))

= Freturn(γgo(1))− Freturn(γgo(0)) + Freturn(γreturn(1))− Freturn(γreturn(0))

= Freturn(γgo(1))− Freturn(γgo(0)) + Freturn(γreturn(1))− Freturn(γreturn(0))

(5.11 and (5.12)
= 0.

Therefore one can modify the γi, such that in any annulus there do not lie two or more
different starting respectively end points, without changing the result of the integral.
Furthermore, we may assume that, if the semistable decomposition contains open annuli
(if not, there exists just one basic wide open subdomain and hence the historical integral
by Coleman is trivial), every starting and end point lies in an open annulus of the
semistable decomposition for the following reason: By the proof of Corollary 5.1.50 it is
already possible to assume ζi 6= ζi+1 for i ∈ {1, ..., n− 1} and therefore

γi(1) = γi+1(0) ∈ Ai ⊆ Uζi ∩ Uζi+1
(5.13)

for i ∈ {1, ..., n−1}, where Ai is an open annulus of the semistable decomposition. Since
γ1 ∗ γ2 ∗ ... ∗ γn is now a cycle, property (5.13) can be extended to

γn(1) = γ1(0).

An interim conclusion is the following: If n > 1 and γ is null-homotopic, we may assume
the following properties for the paths γi with i ∈ {1, ..., n} in addition to Corollary
5.1.50:

(i) ζi 6= ζi+1 for i ∈ {1, ..., n− 1} and ζn 6= ζ1.
(ii) Any ending of γi is Cp-rational and lies in an open annulus of the semistable

decomposition.
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(iii) Within one open annulus of the semistable decomposition there do not lie two or
more different endings of the γi.

Let now γ be a null-homotopic path and the γi as above. As any γi is contained in a
single basic wide open subdomain, there does not exist a γi that passes two different
vertices. Let A be an open annulus of the semistable decomposition and ζ1 and ζ2 two
vertices adjacent to A. On A there is just one possible starting or end point, denoted
by PA. This means that, whenever γ1 ∗ γ2 ∗ ... ∗ γn passes from ζ1 to ζ2, it has to pass
the point PA.

Let PA ∈ A be an end point of a γi, and therefore starting point of γi+1 (or γ1 if
i = n). Then the vertices ζi and ζi+1, which are passed by γi and γi+1 respectively, are
different, as shown in the beginning of the proof of Corollary 5.1.50. Hence the path
γ1 ∗ γ2 ∗ ... ∗ γn passes from ζi to ζi+1, which are the two vertices adjacent to PA. This
means that, whenever γ1 ∗γ2 ∗ ...∗γn passes PA, the previous vertex and the next vertex
on γ1 ∗ γ2 ∗ ... ∗ γn are the two vertices adjacent to A.

Since γ is a null-homotopic path, γ1 ∗ γ2 ∗ ... ∗ γn is also null-homotopic. Since all the
open balls of the analytification are simply-connected, one can retract γ1 ∗ γ2 ∗ ... ∗ γn
to the skeleton, which yields a null-homotopic path on the skeleton. Together with the
previous two paragraphs, this means that any edge between two vertices is passed by
γ1 ∗ γ2 ∗ ... ∗ γn in one direction as often as in the reverse direction. Hence, if we drop
the retraction and go back to Xan, γ1 ∗ γ2 ∗ ... ∗ γn goes from a vertex ζ1 to a vertex ζ2

as often as from ζ2 to ζ1.

As a result of the previous three paragraphs, for an open annulus A of the semistable
decomposition and a vertex ζ adjacent to A, the numbers

nζ,PA := number of paths γi passing ζ and having PA as end point

and

nPA,ζ := number of paths γi passing ζ and having PA as starting point

coincide.

Consider a path γi on Uζi ⊆ Xan. Any differential one-form ω ∈ Ω1
X/Cp , restricted to

the basic wide open subdomain Uζi , is in A∞(Uζi) dz, which means ω = f dz for an f ∈
A∞(Uζi). Furthermore, by Corollary 5.1.42, there exists an antiderivative F ∈ A∞(Uζi)
for f ∈ A∞(Uζi), which means ω = dF . Finally, by Corollary 5.1.47, the integration of
ω along γi is defined as∫ γi(1)

γi(0)
ω =

∫ γi(1)

γi(0)
dF = F (γi(1))− F (γi(0)).

The antiderivative F is just defined up to a constant. Since this constant does not change
the result, one can fix an antiderivative Fζ of ω for any basic wide open subdomain Uζ .

For an open annulus A of the semistable decomposition, we denote the two vertices
adjacent to A by ζ ′A and ζ ′′A. We can assume that any starting and end point lies in such
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an A as shown before. Then it holds∫
γ
ω =

n∑
i=1

∫ Ri

Ri−1

ω

=
n∑
i=1

(Fζi(γi(1))− Fζi(γi(0)))

=
∑
A

(
nζ′A,PAFζ

′
A

(PA)− nPA,ζ′AFζ′A(PA) + nζ′′A,PAFζ
′′
A

(PA)− nPA,ζ′′AFζ′′A(PA)
)

=
∑
A

(
(nζ′A,PA − nPA,ζ′A)Fζ′A(PA) + (nζ′′A,PA − nPA,ζ′′A)Fζ′′A(PA)

)
= 0,

where A runs over all open annuli of the semistable decomposition. The penultimate
line is 0 because

nζA,PA = nPA,ζA

holds for any vertex ζA adjacent to A as mentioned before.
It has been proven that, for a null-homotopic path γ, the historical integral by Coleman
is 0. Let γ and γ′ be paths that are homotopy equivalent. Define the negative −γ of a
path γ to be the path defined by

−γ : [0, 1] −→ Xan

t 7−→ γ(1− t).

By Corollary 5.1.50, there exist n, n′ ∈ N\{0} and paths

γi : [0, 1] −→ Xan

and

γ′j : [0, 1] −→ Xan,

with i ∈ {1, ..., n} and j ∈ {1, ..., n′}, fulfilling the conditions of Corollary 5.1.50 for γ
and γ′. Then the paths

γ′′i : [0, 1] −→ Xan

with i ∈ {1, ..., n+ n′} and

γ′′i :=

{
γi for i ≤ n
−γ′n+n′+1−i for i > n

fulfil the conditions of Corollary 5.1.50 for the concatenation γ ∗ (−γ′). Therefore∫
γ′′
ω =

∫
γ
ω +

∫
−γ′

ω.
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Since γ and γ′ are homotopy equivalent, the concatenation γ ∗ (−γ′) is null-homotopic.
Hence

0 =

∫
γ′′
ω

=

∫
γ
ω +

∫
−γ′

ω

=

∫
γ
ω −

∫
γ′
ω

and consequently ∫
γ
ω =

∫
γ′
ω.

This means that the historical integral of Coleman is well-defined.

Theorem 5.1.53. Let X be a smooth, proper, connected Cp-curve, along with a semi-
stable model X , let ω ∈ Ω1

X/Cp be a differential one-form on X and let P(Xan) be the

set of paths γ : [0, 1] −→ Xan with starting and end points in X(Cp).
Then the historical integral by Coleman is an integration theory in the sense of Definition
3.2.1, meaning it fulfils the following properties:

(i) If U ⊆ Xan is an open subdomain isomorphic to an open ball, and ω = df with f
analytic on U , then ∫

γ
ω = f(γ(1))− f(γ(0))

for all γ : [0, 1] −→ U .
(ii)

∫
γ ω only depends on the fixed end point homotopy class of γ.

(iii) If γ1, γ2 ∈ P(Xan) and γ2(0) = γ1(1), then∫
γ1∗γ2

ω =

∫
γ1

ω +

∫
γ2

ω,

where γ1 ∗ γ2 is the concatenation of the two paths.
(iv) ω 7−→

∫
γ ω is linear in ω for a fixed γ.

Note that for a smooth, proper, connected Cp-curve X it holds Ω1
X/Cp = Z1

dR(X).

Proof. (i) Let U ⊆ Xan be an open subdomain isomorphic to an open ball, and ω = df
with f analytic on U . Then U is contained in an open ball B or open annulus S
of the semistable decomposition. There always exists an antiderivative F ∈ A(B)
respectively F ∈ ALog(S) with ω = dF on Uζ . Since the antiderivative f of ω on
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U is unique up to a constant, there exists a constant c ∈ Cp with F = f + c on U .
Then Corollary 5.1.47 yields∫

γ
ω =

∫
γ

dF

= F (γ(1))− F (γ(0))

= (f + c)(γ(1))− (f + c)(γ(0))

= f(γ(1))− f(γ(0))

for all γ : [0, 1] −→ U .
(ii) Let γ, γ′ ∈ P(Xan) be two paths that are homotopy equivalent and let

γi : [0, 1] −→ Xan

with i ∈ {1, ..., n} be paths fulfilling the conditions of Corollary 5.1.50. Since γ
and γ′ are homotopy equivalent, the concatenation γ1 ∗γ2 ∗ ...∗γn is also homotopy
equivalent to γ′. Therefore the paths γi also fulfil the conditions of Corollary 5.1.50
for γ′. Finally, with the same paths γi for both paths, the historical integral by
Coleman provides the same result for γ and γ′.

(iii) For γ1 and γ2 exist paths as in Corollary 5.1.50. The union of these paths fulfils
the conditions of Corollary 5.1.50 for the concatenation γ1 ∗ γ2. This proves∫

γ1∗γ2

ω =

∫
γ1

ω +

∫
γ2

ω.

(iv) The integral ∫ Q

P
ω =

∫ Q

P
dF = F (Q)− F (P )

on a basic wide open subdomain is linear in F . Since ω, restricted to the basic wide
open subdomain Uζ , is in A∞(Uζ) dz, linearity also holds for ω. As the historical
integral by Coleman is just a sum of the integrals on basic wide open subdomains,

ω 7−→
∫
γ
ω

is linear in ω for a fixed γ.

Example 5.1.54. Take the smooth, proper, connected Cp-curve X from Figure 5.1.
Then its analytification is drawn in Figure 5.8. One has a differential one-form ω ∈ Ω1

X/Cp
and a path γ from the point P ∈ X(Cp) to the point Q ∈ X(Cp), sketched in the
following. But, other than in Figure 5.5, this path does not lie in one basic wide open
subdomain.
The solution is to divide the path in small parts, each of which lies in a basic wide open
subdomain. In the case of Figure 5.8, this can be done by fixing a point R ∈ X(Cp)
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and splitting γ at this point. Then the path γ1 from P to R is in the basic wide open
subdomain Uζ1 and the path γ2 from R to Q is in the basic wide open subdomain Uζ2 .
The paths γ1 and γ2 fulfil the conditions of Corollary 5.1.50.

P

Q

R

ζ1

ζ2

Figure 5.8: Integration along a path, passing the vertices ζ1 and ζ2

For these smaller paths it is possible to apply the techniques developed in this section.
As the restriction of ω to the basic wide open subdomain Uζ1 is in A∞(Uζ1) dz, Corollary
5.1.47 delivers an F1 ∈ A∞(Uζ1) such that

∫
γ1

ω =

∫ R

P
ω =

∫ R

P
dF1 = F1(R)− F1(P ).

As the same holds for Uζ2 , there exists an F2 ∈ A∞(Uζ2) such that

∫
γ2

ω =

∫ Q

R
ω =

∫ Q

R
dF2 = F2(Q)− F2(R).
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For the historical integral by Coleman it follows that∫
γ
ω =

∫ R

P
ω +

∫ Q

R
ω

=

∫ R

P
dF1 +

∫ Q

R
dF2

= F1(R)− F1(P ) + F2(Q)− F2(R)

= F2(Q)− F1(P ) + F1(R)− F2(R).

As already shown in Theorem 5.1.52, this result is independent of the choice of the point
R.

5.2 Modern approach by Berkovich

Vladimir G. Berkovich took the idea of Robert F. Coleman and extended it to any
smooth Cp-analytic space. Hence one is not restricted to curves anymore.
At first a definition of what the Berkovich-Coleman integration theory should be will be
given, and afterwards it will be focused on the question whether it actually exists and
if it is unique. Berkovich proved this in his book Integration of One-forms on P -adic
analytic spaces, [Ber07]. Since the book extends to 156 pages with lots of special terms,
in the following it will be restricted to just giving the cornerstones of its proof.

Definition 5.2.1. The Berkovich-Coleman integration theory is an integration
theory

BC

∫
: P(X)× Z1

dR(X) −→ Cp

for every smooth Cp-analytic space X such that:

(i) If X = Gan
m , then

BC

∫ x

1

dT

T
= Log(x)

for a previously fixed branch of the logarithm.
(ii) If f : X −→ Y is a morphism of smooth Cp-analytic spaces and ω ∈ Z1

dR(Y ), then

BC

∫
γ
f∗ω = BC

∫
f(γ)

ω.

(iii) Condition (i) from Definition 3.2.1 holds for any open subdomain U ⊆ X, which
means: If U ⊆ X is an open subdomain, and ω = df with f analytic on U , then∫

γ
ω = f(γ(1))− f(γ(0))

for all γ : [0, 1] −→ U .
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Remark 5.2.2. In section 5.1.3 it was explained that Coleman constructed a ring,
particularly a filtered O(Uζ)-algebra

A∞(Uζ) ⊆ N(Uζ),

whose de Rham complex

0 −−−→ A∞(Uζ)
d−−−→ A∞(Uζ) dz

d−−−→ ...

is exact at A∞(Uζ) dz (see for Corollary 5.1.42). Berkovich took a similar strategy but
was able to construct a filtered OX -algebra SX ⊆ NX that is defined for a smooth K-
analytic space X, where K is a closed subfield of Cp. Let K be a closed subfield of Cp
for the rest of this section.

Since it is not possible to elaborate the details of the book Integration of One-forms on
P -adic analytic spaces, [Ber07], at least the most important constructions of Berkovich
will be sketched and compared to the older approach of Coleman.

Comparison 1: Space

Coleman took the Cp-analytic curve X and covered it by basic wide open subdomains
that were, in contrast to the definition in section 5.1, defined in the language of rigid
analysis and not in Berkovich language as was done in this paper. Then he defined
the integration on the basic wide open subdomain that can be extended to X (see for
Definition 5.1.51).

Berkovich defined his integration theory more generally on a smooth K-analytic space.
Under certain conditions, described in the beginning of Chapter 4, [Ber07], he was able
to connect two K-rational points of the K-analytic space by smooth K-analytic curves.
This allowed him to reduce some problems to the one-dimensional case.

Comparison 2: Definition of locally analytic functions

Coleman considered locally analytic functions that are locally given as a power series
and are only defined for Cp-rational points.

Berkovich improved the definition of this class of functions and defined naive analytic
functions (Definition 5.1.27). He noted that the original analogue, in the language of
rigid analysis, of all the functions of A∞(Uζ) can be obtained by restriction of a naive
analytic function on Uζ to Cp-rational points (top of p. 3, [Ber07]).

Comparison 3: Branch of the logarithm

Coleman defined the branch of the logarithm, as explained in section 5.1.1, on C×p .
Before defining the filtered O(Uζ)-algebra A∞(Uζ) ⊆ NUζ , he fixed a certain, arbitrarily
chosen, branch of the logarithm.

A main difference in the Berkovich-Coleman integral to the original approach of Coleman
is that Berkovich, for the construction of the integral functions, does not choose a branch
of the logarithm at the beginning but considers all branches at the same time by creating
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a variable λ := Log(p). Later, in Theorem 9.1.1, [Ber07] and just before defining the
integral, he fixed one branch of the logarithm.

Comparison 4: Construction of the integral

Coleman accomplished fixing the value of an integral, whose path from P to Q passes one
vertex, by constructing the logarithmic F -crystal A∞(Uζ), which fulfils the uniqueness
principle. This is very essential for fixing the value of the integral∫ Q

P
ω = F2(Q)− F1(P )

where F1 and F2 are primitives on the different open annuli or open balls. Afterwards,
Coleman extended the integral to curves by covering any curve with basic wide open
subdomains.
Berkovich showed in Chapter 7, [Ber07] the existence of a sheaf SλX for a smooth K-
analytic space X and a branch of the logarithm λ, which he developed to the filtered
OX -algebra SX ⊆ NX mentioned before. This sheaf provides much more antiderivatives
than the analogue A∞(Uζ) of Coleman, with the result that Berkovich could define his
integration theory for any closed differential one-form on X. He proved the existence and
uniqueness of the Berkovich-Coleman integral in Theorem 9.1.1, [Ber07]. The structure
of its proof is very similar to Coleman’s one. A small difference is that in Berkovich’s
proof functoriality is used for finding a primitive of ω. The path is a continuous map

γ : [0, 1] −→ X

to the Cp-analytic space X. He pulled back the closed differential one-form ω along this
path and used the contractibility of the interval [0, 1] to show the existence of a primitive
g of γ∗ω. Then he defined

BC

∫
γ
ω := g(1)− g(0).

Functoriality delivers property (iii) of Definition 5.2.1, which is a generalization of prop-
erty (i) of Definition 3.2.1. If it holds ω = df , one can choose g such that it fulfils g = γ∗f
and it can be calculated

BC

∫
γ
ω = g(1)− g(0) = (γ∗f)(1)− (γ∗f)(0) = f(γ(1))− f(γ(0)).

Theorem 5.2.3. The Berkovich-Coleman integration theory exists and is unique.

Proof. Theorem 9.1.1, [Ber07].
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6 Comparing the integrals

6.1 The tropical Abel-Jacobi map

Let K be a field that is algebraically closed and complete with respect to a nontrivial,
non-archimedean valuation val : K −→ R∪ {∞} and X be a smooth, proper, connected
K-curve, along with a semistable model X . Since the skeleton was just defined for
K = Cp, this will be assumed in the following.

Construction 6.1.1. Restrict [., .] to M := H1(Γ,Z) ⊆ C1(Γ,Z). With

NR := Hom(H1(Γ,Z),R) = H1(Γ,R)

one gets a homomorphism

η′ : M −→ NR,

m 7−→ [.,m].

This is a homomorphism, as [., .] is symmetric and bilinear. As M = H1(Γ,Z) is a free
abelian group, η′(M) is a lattice in NR. If the rank of M is g ∈ N\{0}, it holds NR ∼= Rg.

Definition 6.1.2. The Jacobian of the connected, antisymmetric, weighted graph Γ is
defined as

Jac(Γ) := NR/η
′(M).

The Jacobian of a skeleton ΓX is defined to be the Jacobian of its corresponding graph
Γ and denoted by Jac(ΓX ).

Construction 6.1.3. Let x0 ∈ ΓX be a point of the skeleton that is not a vertex. Then
x0 lies in an open annulus A whose skeleton can be identified with (0,− log(ρ)), where
ρ ∈ |C×p |. Hence x0 corresponds uniquely to an element

r0 ∈ (0,− log(ρ)).

The open annulus lies between two vertices x1, x2 ∈ ΓX , which can be identified with
the ends of the closed interval [0,− log(ρ)]. Let x1 ∈ ΓX be the vertex corresponding to
0 and x2 ∈ ΓX be the vertex corresponding to − log(ρ).
In the graph Γ, the vertices x1, x2 ∈ ΓX correspond to vertices V1, V2 ∈ Γ. The aim is to
create a new graph Γx0 by taking Γ and doing the following. Add a vertex V0 to Γx0 and
replace the edge e, corresponding to the skeleton of the open annulus A with length l(e) =
− log(ρ), by two edges e1, e2 ∈ E(Γx0). If ιass(e) = (V1, V2) the edges will be defined by
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ιass(e1) = (V1, V0), ιass(e2) = (V0, V2), l(e1) = r0 > 0 and l(e2) = − log(ρ) − r0 > 0. If
ιass(e) = (V2, V1), tail and head vertices will be changed. This delivers a new connected,
antisymmetric, weighted graph Γx0 . The notation Γx0,x′0

= (Γx0)x′0
will be used in the

following.

Lemma 6.1.4. Γx0 from Construction 6.1.3 refines Γ.

Proof. There exists an injection

a : V (Γ) ↪→ V (Γx0)

and a surjection

b : E(Γx0)� E(Γ)

with b(e1) = b(e2) = e where the edges from Construction 6.1.3 are meant. For e ∈ Γ,
there exist the vertices V0, V1, V2 ∈ V (Γx0) and the edges e1, e2 ∈ E(Γx0), such that

(i) b−1(e) = {e1, e2},
(ii) l(e1) + l(e2) = l(e) and
(iii) ιass(e1) = (V1, V0), ιass(e2) = (V0, V2)

where ιass is the edge assignment map with respect to Γx0 . Therefore Γx0 refines Γ.

Definition 6.1.5. The tropical Abel-Jacobi map with respect to a point x0 ∈ ΓX is
the function

ι′ : ΓX −→ Jac(ΓX ),

x 7−→ [., p]

where p ∈ C1(Γx0,x,Z) is a path in Γx0,x from the vertex, corresponding to x0, to the
vertex, corresponding to x.

Remark 6.1.6. A priori [., p] is an element of Hom(H1(Γx0,x,Z),R) = H1(Γx0,x,R)
and not of NR = Hom(H1(Γ,Z),R) = H1(Γ,R). Restricting the homomorphism [., p] to
H1(Γ,Z) by

[., p] : H1(Γ,Z) −→ R,
m 7−→ [mrefine, p]

allows to consider [., p] as an element of NR = Hom(H1(Γ,Z),R) = H1(Γ,R).

Lemma 6.1.7. The tropical Abel-Jacobi map from Definition 6.1.5 is well-defined.

Proof. Let p1, p2 ∈ C1(Γx0,x,Z) be two paths as required in Definition 6.1.5. Then
p1 − p2 ∈ C1(Γx0,x,Z) and

d∗(p1 − p2) (V ) = 0
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for all V ∈ V (Γx0,x). Hence p1 − p2 ∈ H1(Γx0,x,Z) and [., p1 − p2] ∈ η′(H1(Γx0,x,Z)).
Finally

[., p1] = [., p1 − p2 + p2] = [., p1 − p2] + [., p2] = 0 + [., p2] = [., p2]

and ι′ is well-defined.

Example 6.1.8. Consider a connected, antisymmetric, weighted graph Γ associated to
the analytification of the curve X.

Xan Γ

− log(ρ1)

− log(ρ2)

− log(ρ4)

− log(ρ3)

Figure 6.1: Γ associated to ΓX with Xη ∼= Xan

Define a := − log(ρ1), b := − log(ρ2), c := − log(ρ3) and d := − log(ρ4). Furthermore,
the corresponding edges are named ea, eb, ec and ed.
M = H1(Γ,Z) are the integral 1-cycles of the graph Γ. Each two of the three integral
1-cycles

m1 = ec − ea + eb

m2 = ec − ed
m3 = ed − ea + eb

form a basis of the lattice M (see Figure 6.2). m1, m2 and m3 generate M , and because
of m3 = m1−m2, the set {m1,m2} is a basis of the rank 2 lattice M . Hence [.,m1] and
[.,m2] form a basis of NR as the edge length pairing is non-degenerate. Fixing the basis
{m1,m2} of M yields the canonical isomorphism

α : NR −→ R2,

ϕ 7−→ (ϕ(m1), ϕ(m2)).

The property

η′(M) = η′(m1Z +m2Z) = η′(m1)Z + η′(m2)Z
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a

b

d

c

m3

m2

m1

Figure 6.2: Three integral 1-cycles of the graph Γ

gives

Jac(ΓX ) = Jac(Γ) = NR/η
′(M)

∼= α(NR)/α(η′(M))

= R2/α
(
η′(m1)Z + η′(m2)Z

)
= R2/

{
α(η′(m1))Z + α(η′(m2))Z

}
.

With

α(η′(m1)) = α([.,m1])

= ([m1,m1], [m2,m1])

= (a+ b+ c, c)

and

α(η′(m2)) = α([.,m2])

= ([m1,m2], [m2,m2])

= (c, c+ d)

follows

Jac(ΓX ) ∼= R2/ {(a+ b+ c, c)Z + (c, c+ d)Z} .
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(a + b + c, c) = (0, 0)

(c, c + d) = (0, 0)

(0, 0)

(a + b + 2c, 2c + d) = (0, 0)

Figure 6.3: The purple marked area is Jac(ΓX )

The next goal is to calculate the tropical Abel-Jacobi map for a point x1 ∈ ΓX . Choose
the base point to be the red vertex and denote it by x0 ∈ Γ.

Since x1 ∈ ΓX in general does not correspond to a vertex in Γ, one has to refine Γ by x1

and gets Γx1 . The new vertex, corresponding to x1, is marked in yellow.

a

b

d1c

d2

p

Figure 6.4: Refinement of Γ

Choose a path p from x0 to x1, that means from the red to the yellow vertex. One
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possibility is p = ec − ed2 . Then one has

ι′ : ΓX −→ Jac(ΓX ),

x1 7−→ α−1 (([p,m1], [p,m2])).

This map yields for x1:

ι′(x1) = α−1 (([p,m1], [p,m2]))

= α−1 ((c, c+ d2)).

Under the identification NR ∼= R2, this becomes

ι′(x1) = (c, c+ d2).

a

b

d1c

d2

p

ι′

c

c

d1

d2

a b

Figure 6.5: The tropical Abel-Jacobi map ι′

The definition of the Abel-Jacobi map is independent of the choice of the path p, as this
choice can only differ by a Z-linear combination of m1 and m2, but they map to zero in
Jac(ΓX ).
If one chooses, for instance, the path p′ = d1, it holds p′ = p−m2, which gives

ι′(x1) = α−1 (([p′,m1], [p′,m2]))

= α−1 (([p,m1]− [m2,m1], [p,m2]− [m2,m2]))

= α−1 (([p,m1], [p,m2]))− α−1 (([m2,m1], [m2,m2]))

= α−1 (([p,m1], [p,m2]))− [m2, .]

= α−1 (([p,m1], [p,m2]))− [.,m2]

= α−1 (([p,m1], [p,m2]))− η′(m2)

= α−1 (([p,m1], [p,m2]))− 0

= α−1 (([p,m1], [p,m2])),
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which is the same result as before.
Eventually one can lift the tropical Abel-Jacobi map ι′ to ι′. Therefore one has to find
covers of Γ and Jac(Γ). The cover of the latter is NR but the cover of Γ may be more
difficult. In this case one gets the following map, which will be important later on:

ι̃′

b

a c
d

a

b
c

a

b

d2

d1 dc

b b b b

a a a a
c c c cd d d d

Figure 6.6: The cover ι̃′ of the tropical Abel-Jacobi map

Remark 6.1.9. In the literature you can find two different definitions of the Jacobian
of a connected, antisymmetric, weighted graph Γ. The first one has been introduced in
Definition 6.1.2. In the following, the second one is going to be described, and afterwards
it will be shown that both are canonically isomorphic.

Definition 6.1.10. The divisor group DivR(Γ) of Γ is defined to be C0(Γ,R). The
degree of a divisor D ∈ DivR(Γ) is defined to be

deg(D) =
∑

V ∈V (Γ)

D(V ).

Furthermore it is defined

Div0
R(Γ) := {D ∈ DivR(Γ) : deg(D) = 0}

PrinR(Γ) := d∗(Im(d)) .

Finally

Pic0
R(Γ) := Div0

R(Γ)/PrinR(Γ).
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Lemma 6.1.11. Pic0
R(Γ) is a well-defined commutative group.

Proof. First show PrinR(Γ) ⊆ Div0
R(Γ). Let

f =
∑

V ∈V (Γ)

nV V ∈ PrinR(Γ) ⊆ C0(Γ,R).

Then there exists an α =
∑

e∈E(Γ) nee ∈ Im(d) with d∗α = f . Consequently there exists
an

g =
∑

V ∈V (Γ)

mV V ∈ C0(Γ,R)

such that dg = α. Therefore

dg : E(Γ) −→ R,

e 7−→ me+ −me−

l(e)
.

This leads to

f = d∗dg : V (Γ) −→ R,

V 7−→
∑
e∈E(Γ)

e+=V

dg(e)−
∑
e∈E(Γ)

e−=V

dg(e)

=
∑
e∈E(Γ)

e+=V

me+ −me−

l(e)
−
∑
e∈E(Γ)

e−=V

me+ −me−

l(e)

and

deg(f) =
∑

V ∈V (Γ)

 ∑
e∈E(Γ)

e+=V

me+ −me−

l(e)
−
∑
e∈E(Γ)

e−=V

me+ −me−

l(e)


=

∑
e∈E(Γ)

me+ −me−

l(e)
−
∑

e∈E(Γ)

me+ −me−

l(e)

= 0.

This shows f ∈ Div0
R(Γ).

Since d and d∗ are linear, it is clear that PrinR(Γ) and Div0
R(Γ) are subgroups of DivR(Γ).

Moreover DivR(Γ) is commutative, hence any subgroup is normal, which means

Pic0
R(Γ) = Div0

R(Γ)/PrinR(Γ)

is a commutative group.
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Lemma 6.1.12. The map

η′R : H1(Γ,R) −→ NR = Hom(H1(Γ,Z),R)

α 7−→ [., α]

is a group isomorphism. Note that the restriction of η′R to H1(Γ,R) is η′.

Proof. Group homomorphism: Let α1 =
∑

e∈E(Γ) nee, α2 =
∑

e∈E(Γ)mee ∈ H1(Γ,R).
Then it holds

η′R(α1 + α2) = η′R

 ∑
e∈E(Γ)

(ne +me)e


=

 . , ∑
e∈E(Γ)

(ne +me)e


=

∑
e∈E(Γ)

. · (ne +me)l(e)

=
∑

e∈E(Γ)

. · nel(e) +
∑

e∈E(Γ)

. ·mel(e)

=

 . , ∑
e∈E(Γ)

nee

+

 . , ∑
e∈E(Γ)

mee


= η′R(α1) + η′R(α2).

Injectivity: Take an α =
∑

e∈E(Γ) nee ∈ ker(σ), ergo η′R(α) = [., α] = 0. This means
that, for all β =

∑
e∈E(Γ)mee ∈ H1(Γ,R), it follows

[β, α] =
∑

e∈E(Γ)

menel(e) = 0,

and particularly for any edge β = α one has

[α, α] =
∑

e∈E(Γ)

(ne)
2l(e) = 0,

ergo ne = 0 for all edges e ∈ E(Γ), which means α = 0.

Surjectivity: Let µ be a homomorphism from H1(Γ,Z) to R, meaning that

µ ∈ NR = Hom(H1(Γ,Z),R).

Since C1(Γ,Z) is a free Z-module and H1(Γ,Z) = ker(d∗) is a submodule, it must be
free, too. This means that there exists a basis {mi : i ∈ I} of H1(Γ,Z), where I denotes
the index set. Consequently the subset

{[.,mi] : i ∈ I} ⊆ NR = Hom(H1(Γ,Z),R)
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is a basis of Hom(H1(Γ,Z),R), which is a real vector space. Hence µ can be written as
a linear combination of the [.,mi], namely

∑
i∈J ri[.,mi] where J is a finite subset of I.

The equality

µ =
∑
i∈J

ri[.,mi] =

[
. ,
∑
i∈J

rimi

]

gives

η′R

(∑
i∈J

rimi

)
= µ

with
∑

i∈J rimi ∈ H1(Γ,R).

Corollary 6.1.13. Jac(Γ) ∼= H1(Γ,R)/H1(Γ,Z), and if the basis of the real vector space
H1(Γ,R) has cardinality g ∈ N\{0}, it follows

Jac(Γ) ∼= (R/Z)g.

Proof. It holds

η′R (H1(Γ,R)/H1(Γ,Z)) = η′R (H1(Γ,R)) /η′R (H1(Γ,Z))

= NR/η
′ (H1(Γ,Z))

= Jac(Γ)

and, after choosing a Z-basis {m1, ...,mg} of the Z-module H1(Γ,Z),

H1(Γ,R)/H1(Γ,Z) = (H1(Γ,Z)⊗Z R) / (H1(Γ,Z)⊗Z Z)

= ((Zm1 + ...+ Zmg)⊗Z R) / ((Zm1 + ...+ Zmg)⊗Z Z)
∼= (R/Z)g.

Theorem 6.1.14. There exists a canonical isomorphism between Jac(Γ) and Pic0
R(Γ).

Proof. Baker and Faber proved this in Theorem 3.4, [BF10], but they used a different
notation. Firstly, it is proved for a tropical curve. By the preface of section 3, [BF10],
one can uniquely associate a connected, antisymmetric, weighted graph with a tropical
curve.
Secondly, Baker and Faber defined the Jacobian of Γ as Ω(Γ)∗/H1(Γ,Z), where Ω(Γ) ⊆
C1(Γ,Z) is the “space of harmonic 1-forms” (Preface section 2, (2.2), [BF10]). Compar-
ing with the notion of this paper, that is exactly ker(d∗), as harmonic for an element
α ∈ C1(Γ,Z) means just d∗α = 0. Hence it holds

Ω(Γ)∗ = ker(d∗)∗ = H1(Γ,Z)∗ = Hom(H1(Γ,Z),R) = NR.
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Since η′R is an isomorphism, H1(Γ,Z) and η′R (H1(Γ,Z)) = η′ (H1(Γ,Z)) are isomorphic.
It follows

Ω(Γ)∗/H1(Γ,Z) ∼= NR/η
′(H1(Γ,Z)) = Jac(Γ).

Therefore the Jacobian defined by Baker and Faber, and the Jacobian defined in Def-
inition 6.1.2 are isomorphic. This permits using Theorem 3.4, [BF10] for proving the
above theorem.

Remark 6.1.15. For defining Pic0
R(Γ) to be the Jacobian of Γ, there exists another

definition of the tropical Abel-Jacobi map with respect to a point x0 ∈ Γ:

ι′ : Γ −→ Jac(Γ),

x 7−→ [x]− [x0]

One takes the divisor [x] of x ∈ Γ. This is always possible if Div(Γ) is considered as the
group of the divisors for any point x ∈ Γ, or just for the vertices as Baker and Faber in
[BF10]. Both versions can be found in the literature. But by refining Γ, they coincide.
Then [x]− [x0] ∈ Div0

R(Γ) and

[x]− [x0] ∈ Div0
R(Γ)/PrinR(Γ)

denotes the corresponding equivalence class, which is an element of the Jacobian of Γ.

Here it even holds [x]− [x0] ∈ Div0(Γ) as the coefficients are from Z. Hence one can iden-
tify [x]− [x0] ∈ Pic0

R(Γ) explicitly with an element from NR/η
′(H1(Γ,Z)) = Jac(Γ), with

respect to the canonical isomorphism of Theorem 6.1.14. From Theorem 2.8, [BF10] and
the previous remark, directly after Definition 2.6, [BF10], one knows that the canonical
isomorphism descends from d∗ : C1(Γ,Z) −→ C0(Γ,Z). Let p ∈ C1(Γ,Z) be a path from
[x0] to [x], both considered as vertices of Γx,x0 , then one has

d∗p = [x]− [x0].

By the proof of Lemma 2.7, [BF10], [., p] is the corresponding element of Jac(Γ) =
NR/η

′(H1(Γ,Z)). This is exactly how the tropical Abel-Jacobi map is defined in Defini-
tion 6.1.5.

As a consequence, both definitions are equivalent. In the following, the version of Defi-
nition 6.1.5 is preferred.

Theorem 6.1.16. Consider the lift ι̃′ : Γ̃ −→ NR of ι′ with respect to the universal cover
π : Γ̃ −→ Γ. Let ẽ ⊆ Γ̃ be an edge, and let e ⊆ Γ be its image. Then it holds:

(i) If Γ\e is disconnected, then ι̃′ is constant on ẽ.
(ii) If Γ\e is connected, then ι̃′ is affine-linear on ẽ with rational slope.

Proof. Firstly, the lift ι̃′ : Γ̃ −→ NR of ι′ to universal covers is given by x 7−→ [., p], where
p̃ ∈ C1(Γ̃x0,x,Z) is a path in Γ̃x0,x from the vertex corresponding to x0, the chosen base
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point, to the vertex corresponding to x. Then p is defined as π′(p̃), where

π′ : C1(Γ̃,Z) −→ C1(Γ,Z),

α̃ 7−→
∑

e∈E(Γ)

 ∑
ẽ∈E(Γ̃)

π(ẽ)=e

α̃(ẽ)

 e

denotes the reduction of 1-chains with respect to π. It is a group homomorphism because

π′(α̃+ β̃) =
∑

e∈E(Γ)

 ∑
ẽ∈E(Γ̃)

π(ẽ)=e

(α̃+ β̃)(ẽ)

 e

=
∑

e∈E(Γ)

 ∑
ẽ∈E(Γ̃)

π(ẽ)=e

α̃(ẽ) +
∑
ẽ∈E(Γ̃)

π(ẽ)=e

β̃(ẽ)

 e

=
∑

e∈E(Γ)

 ∑
ẽ∈E(Γ̃)

π(ẽ)=e

α̃(ẽ)

 e+
∑

e∈E(Γ)

 ∑
ẽ∈E(Γ̃)

π(ẽ)=e

β̃(ẽ)

 e

= π′(α̃) + π′(β̃)

for α̃, β̃ ∈ C1(Γ̃,Z).

(i) If Γ\e is disconnected, it consists of two connected subgraphs Γ1 and Γ2. The only
connection between them is the edge e. Therefore an arbitrary cycle m ∈ H1(Γ,Z)
has to pass e in positive direction just as often as in negative direction. Hence it
holds [e,m] = 0. Let x1, x2 be points on ẽ. It has to be shown

ι̃′(x1) = ι̃′(x2).

First refine Γ̃ such that there exist vertices V1, V2 ∈ V (Γ̃) corresponding to the
points x1, x2. Denote the resulting edge between V1 and V2, which has the same
orientation as ẽ, by ẽ1,2. Then one has still

[e1,2,m] = 0

for all m ∈ H1(Γ,Z), where e1,2 ∈ E(Γx1,x2) is the reduced edge of ẽ1,2. Notice
that the path from V1 to V2 is ẽ1,2 or −ẽ1,2. Thus it will be written ±ẽ1,2 for this
path
Let x0 ∈ Γ̃ be an arbitrary base point and p̃1 respectively p̃2 be paths in Γ̃x0,x1,x2

from V0, the corresponding vertex to x0, to V1 respectively V2. Since Γ̃, and
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therefore Γ̃x0,x1,x2 , is simply-connected, they differ exactly by ẽ1,2 and it can be
calculated

ι̃′(x1)− ι̃′(x2) = [., π′(p̃1)]− [., π′(p̃2)]

= [., π′(p̃1)− π′(p̃2)]

= [., π′(p̃1 − p̃2)]

= [., π′(±ẽ1,2)]

= ±[., π′(ẽ1,2)]

= ±[., e1,2]

= 0

as [e1,2,m] = 0 for all m ∈ H1(Γ,Z) and [., e1,2] ∈ NR = Hom(H1(Γ,Z),R). Since
it holds ι̃′(x1) = ι̃′(x2) for arbitrary points x1, x2 on ẽ, ι̃′ is constant on ẽ.

(ii) First it has to be specified what is meant with affine linearity on ẽ. ι̃′ maps to
NR, which is a R-vector space. Thus one wants to have a kind of R-linearity on
ẽ to give a meaning to the term affine linearity for ι̃′. Let x0, x1 be the vertices
adjacent to ẽ. From Construction 6.1.3 it is known already that the reduced edge
π′(ẽ), which is an edge of Γ, can be identified with the interval (0, l(π′(ẽ))). As
R-linearity exists on (0, l(ẽ)), it induces R-linearity on π′(ẽ) and hence on ẽ, as
they are isomorphic.
Also by Construction 6.1.3 follows: Choose x0 in a way that it becomes identified
with 0, and x1 becomes identified with l(π′(ẽ)) from the closed interval [0, l(π′(ẽ))].
Let x be the point on ẽ identified with t · l(π′(ẽ)), where t ∈ [0, 1]. Refinement
creates an edge ẽ′ with adjacent vertices x0 and x. Its reduction π′(ẽ′) possesses
a length l(π′(ẽ′)), too. But it holds l(π′(ẽ′)) = t · l(π′(ẽ)), which follows from
Construction 6.1.3 by choosing r0 = t · l(π′(ẽ)), which is identified with x.
As R-linearity has a meaning for ẽ, one can start to prove that ι̃′ is affine-linear on
ẽ. Take x0 as a base point. Then the path from x0 to x is just the edge ẽ′. By the
identification of ẽ with (0, l(π′(ẽ))), x can be seen as t · x1. Then it holds

ι̃′(t · x1) = ι̃′(x)

= ι̃′(x)

= [., π′(ẽ′)].

A cycle m ∈ H1(Γ,Z) contains me ∈ Z times the edge e = π′(ẽ). Hence [m,π′(ẽ′)] =
mel(π

′(ẽ′)), which allows to continue the calculation

=
l(π′(ẽ′))

l(π′(ẽ))
· [., π′(ẽ)]

=
t · l(π′(ẽ))
l(π′(ẽ))

· [., π′(ẽ)]

= t · [., π′(ẽ)]
= t · ι̃′(x1).
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Hence ι̃′ is R-linear on ẽ if the base point x0 is chosen as above. If one chooses an
arbitrary base point x′0, a constant has to be added that corresponds to the path
from x′0 to x0. Therefore ι̃′ is just affine R-linear on ẽ.

Definition 6.1.17. Since ι̃′ is affine R-linear on ẽ, there exists a c ∈ NR and a linear
map ι̃′linear : Γ̃ −→ NR such that ι̃′(x) = ι̃′linear(x) + c. Furthermore ι̃′linear is called the
linear map corresponding to ι̃′.

Theorem 6.1.18. ι̃′linear is bounded by the genus g of the curve X.

Proof. Firstly, the genus g of the curve X is equal to the rank of the free abelian group
M = H1(Γ,Z), where Γ is the corresponding graph to ΓX and X is a semistable model
for X.
Let ẽ be an arbitrary edge of Γ̃ and choose the base point x′0 = x0, where the notation
from the proof of Theorem 6.1.16 is used. Then ι̃′linear and ι̃′ coincide. As ι̃′linear = ι̃′ is
linear on ẽ, it suffices to check the operator norm for the element x1 (notation from the
proof of Theorem 6.1.16).
The norm of x1 is just the distance to x0, namely l(π′(ẽ)) ∈ R>0. The norm of ι̃′linear(x1)
depends on the chosen norm on NR ∼= Rg. If Rg is considered as an Euclidean space,
one has the norm defined by the scalar product. In general, the sum norm is the biggest
one on Rg, so this norm will be considered to treat the worst case.

α : NR −→ Rg,
ϕ 7−→ (ϕ(m1), ..., ϕ(mg))

delivers a canonical isomorphism between NR and Rg after choosing a Z-basis of M . By
identifying them via this isomorphism, the image of x1 with respect to ι̃′linear is

ι̃′linear(x1) =


[m1, π

′(ẽ)]
...
...

[mg, π
′(ẽ)]


where for each entry it holds

0 ≤ [m1, π
′(ẽ)] ≤ l(π′(ẽ)).

Hence

∥∥ι̃′linear(x1)
∥∥

1
=

∥∥∥∥∥∥∥∥


[m1, π
′(ẽ)]

...

...
[mg, π

′(ẽ)]


∥∥∥∥∥∥∥∥

1

≤ g · l(π′(ẽ)) = g · ‖x1‖

and ∥∥ι̃′linear

∥∥
Op
≤ g

by the remark in the beginning.
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6.2 Tropicalizing the Abel-Jacobi map

The goal is now to investigate the relationship between the algebraic and tropical
Abel-Jacobi map. Take the same presumptions as in section 6.1. The following re-
sults were proven in Theorem 4.3.7, [KRZ16a] under the additional assumption that
X is a Mumford curve, meaning that Xk has only rational components. By Theorem
4.2.5, [KRZ16a] there exists then a homomorphism η : H1(Xan,Z) −→ T (Cp) such that
Jan ∼= T an/η (H1(Xan,Z)). Contrary to this, in the following it will be done in greater
generality by using the Raynaud uniformization theory, explained in section 2.4.

Construction 6.2.1. The aim is to construct the skeleton of the Jacobian J , belonging
to the curve X. Since the Jacobian is an abelian variety, the following results will be
proven in greater generality for any abelian variety A over a field K, described in the
preamble of section 6.1.
By Construction 2.4.2 there exists the short exact sequence

0 M ′ Ean Aan 0.π

In Construction 2.4.4 the unique morphism

trop : Ean −→ NR

was defined. SinceM ′ = ker(π) is a subset of Ean, one receives the following commutative
diagram

M ′ Ean

trop(M ′) NR

trop trop

where trop(M ′) is just a subset of NR, and trop(M ′) −→ NR is consequently just the
inclusion.
The tropicalization map yields now a unique map

τ : Aan = Ean/M ′ −→ Σ := NR/ trop(M ′)

such that the diagram

0 M ′ Ean Aan 0

0 trop(M ′) NR Σ 0

trop

π

trop τ

commutes and both lines are exact.

Σ = NR/ trop(M ′)

is called the skeleton of the Jacobian if one sets A = J . In section 6.1, the Jacobian
of the skeleton of X was already defined to be Jac(Γ) = NR/η

′(H1(Γ,Z)). Therefore the
next goal is to show: The skeleton of the Jacobian is the Jacobian of the skeleton.
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Lemma 6.2.2. There exists a unique surjective homomorphism

τ ′ : Jan −→ Jac(Γ)

such that the diagram

Ean Jan

NR Jac(Γ)

π

trop τ ′

commutes.

Proof. Corollary 5.6, [BR14].

Theorem 6.2.3 (The skeleton of the Jacobian is the Jacobian of the skeleton).
There is a canonical isomorphism between the lattices

trop(M ′) ⊆ NR

and

η′ (H1(Γ,Z)) ⊆ NR.

Hence

Σ ∼= Jac(Γ).

Furthermore the maps τ : Jan −→ Σ and τ ′ : Jan −→ Jac(Γ) coincide under this
identification.

Proof. Corollary 6.6, [BR14].

Theorem 6.2.4 (The retraction and Abel-Jacobi map commute). Let P0 ∈
X(Cp) and let x0 = τ(P0) ∈ Γ. Choose the algbebraic and tropical Abel-Jacobi maps
with respect to these base points. Then the following square is commutative:

Xan Jan

Γ Σ

τ

ι

τ

ι′

Proof. Follows from Proposition 6.1, [BR14] combined with the identification from The-
orem 6.2.3.
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6.3 Comparing the integrals on a curve

The final goal is to investigate the difference between the abelian and Berkovich-Coleman
integral on curves. Take the same presumptions as in section 6.1.

Construction 6.3.1. Let A be an abelian variety over Cp and let π : Ean −→ Aan be
the topological universal cover of Aan.

Since Ean is locally isomorphic to Aan, it holds Lie(A) = Lie(E), and since any invariant
one-form on Ean descends to an invariant one-form on Aan, one has Ω1

inv(E) = Ω1
inv(A).

Normally the Berkovich-Coleman integral is path-dependent, but as Ean is simply-
connected, any Berkovich-Coleman integral on Ean is path-independent and it is possible
to define the homomorphism

logBC : E(Cp) −→ Lie(A), P 7−→ BC

∫ P

0
.

Restricting π : Ean −→ Aan to E(Cp) and composing with logA(Cp) : A(Cp) −→ Lie(A)
delivers the homomorphism

logAb : E(Cp) −→ Lie(A), P 7−→ Ab

∫ π(P )

0
.

Theorem 6.3.2. Let A be an abelian variety and π : Ean −→ Aan be the lift of Aan.
Then the homomorphism

logBC− logAb : E(Cp) −→ Lie(A),

P 7−→ BC

∫ P

0
π∗ − Ab

∫ π(P )

0

factorizes as

E(Cp) Lie(A)

NQ.

logBC− logAb

trop L

Proof. By Corollary 2.4.6 there exists the short exact sequence

0 A0(Cp) E(Cp) NQ 0.
trop

The homomorphism logBC− logAb factorizes through NQ = E(Cp)/A0(Cp) if and only
if A0(Cp) ⊆ ker(logBC− logAb), meaning that it remains to prove that

logBC = logAb

on A0(Cp):

129



CHAPTER 6. COMPARING THE INTEGRALS

logAb is uniquely characterized by d logAb : Lie(A0) −→ Lie(A0) to be the identity, and
it holds: For all open subgroups H in the canonical topology of A0(Cp), A0(Cp)/H is a
torsion group. This is a consequence of the proof of Theorem 4.1.2.
A0 is not an abelian variety anymore, so it is not possible to directly get a unique logAb.
But by Lemma 4.1.15 there exists a unique logarithm

logA0
: A0(Cp) −→ Lie(A0) = Lie(A)

with d logA0
= id if A0(Cp) is a Cp-Lie group and A0(Cp)f = A0(Cp) (notation of

Definition 4.1.12). The first follows because A0(Cp) is a Cp-analytic domain in A(Cp),
and hence an open subgroup of A(Cp) in the naive analytic topology. The second holds
because A0(Cp)/H is a torsion group for any open subgroupH. Therefore logAb

∣∣
A0(Cp)

=

logA0
is uniquely characterized by the fact that its linearization is the identity map.

Consider logBC. If it were shown that logBC also induces the identity map on tangent
spaces, the above equality would have been proven. Since

A0(Cp) = ker(trop : E(Cp)� NQ),

the deformation retraction of Aan takes A0 onto {0}. Hence A0 is simply-connected, as
it is contractible. It follows that the Berkovich-Coleman integral is path-independent on
A0(Cp). With that said, logBC is well-defined on A0(Cp).
A priori logBC could possibly be another logarithm than logA0

. The abelian logarithm
logA0

is uniquely defined by the property d logA0
= id. Hence it remains to show

d logBC = id. The linearization of logBC is defined on the Lie algebra of A0, that is the
tangent space at 0. The element 0 ∈ A0 ⊆ A has a neighbourhood U , isomorphic to
an open unit ball. On U the Berkovich-Coleman integral can be calculated by formal
antidifferentation. Theorem 5.1.11 yields that the linearization of logBC is the identity
because 1 is the neutral element of Lie(A0). So it must be equal to logAb on U as
d logBC : Lie(A0) −→ Lie(A0) is the identity.
Since logBC also fulfils the condition d logBC = id, which is necessary for the uniqueness
of the abelian logarithm, it follows logBC = logAb on A0(Cp).

Corollary 6.3.3. The Berkovich-Coleman and abelian integral coincide on abelian va-
rieties of good reduction.

Proof. Good reduction means that there exists a model A of the abelian variety A with
smooth special fibre Ak, meaning that singular points do not exist. This is equivalent
to the fact that the analytification Aan of the corresponding generic fibre A = AK does
not contain open annuli which are not subset of an open ball, meaning that its open
annuli are all subsets of open balls and hence there are no loops in Aan. Since A is
connected, it is contractible and hence M = H1(Aan,Z) = 0. The same holds for its
dual N = Hom(M,Z) = 0. Eventually logBC− logAb : E(Cp) −→ Lie(A) factorizes
through {0}, meaning that logBC− logAb = 0 on the whole set E(Cp).
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Corollary 6.3.4. The Berkovich-Coleman and abelian integral coincide on open balls
contained in Xan.

Proof. An open ball B in the analytification Xan always retracts to a single point of the
skeleton, consequently we have

trop(B) = ξ ∈ NQ,

which leads to

(logBC− logAb)(B) = (L ◦ trop)(B)

= L(ξ) ∈ Lie(A).

This means that logBC and logAb on U just differ by a constant, meaning that there
exists a c ∈ Lie(A) such that logBC = logAb + c. For two points P,Q ∈ U it holds

BC

∫ Q

P
ω = BC

∫ Q

0
ω − BC

∫ P

0
ω

= logBC(Q) ω − logBC(P ) ω

= (logAb(Q) + c) ω − (logAb(P ) + c) ω

= logAb(Q) ω − logAb(P ) ω

= Ab

∫ π(Q)

0
ω − Ab

∫ π(P )

0
ω

= Ab

∫ π(Q)

π(P )
ω

for any ω ∈ Ω1
inv(E).

Since U is already simply-connected and the path was chosen in U , the equation can be
reduced from Ean to Aan and it follows

BC

∫ Q

P
ω = Ab

∫ Q

P
ω

for any ω ∈ Ω1
inv(A).

Construction 6.3.5. The goal is to also control the difference of those integrals between
two Cp-points not contained in the same open ball. Unfortunately one cannot control
this difference between two arbitrary Cp-points, but it is possible to do so within an
open annulus of the semistable decomposition.
For this purpose the commutative diagram from Theorem 6.2.4 will be lifted:

X̃an Ean

Γ̃ NR

τ

ι̃

trop

ι̃′
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Let ẽ ⊆ Γ̃ be an open edge, with image e ⊆ Γ. Define

A := τ−1(e)

and

Ã := τ−1(ẽ).

These are open annuli and

A ∼= Ã.

This yields the following result:

Theorem 6.3.6. With the above notation, there is a Cp-linear map

a : Ω1
X/Cp −→ Cp

such that, for all P,Q ∈ A(Cp), it holds

BC

∫ Q

P
ω − Ab

∫ Q

P
ω = a(ω) (v(Q)− v(P )) .

Proof. As P and Q both lie in an open annulus that is simply-connected, the Berkovich-
Coleman integration is path-independent and BC

∫ Q
P ω makes sense. Choose P0 and

x0 = τ(P0) as the base points of the Abel-Jacobi maps. Furthermore P̃0 is chosen to be
the lift of P0, such that ι̃(P̃0) = 0. This is possible as ι(P0) = 0. With ωJ ∈ Ω1

J/Cp and
Proposition 6.3.2, applied to the Jacobian J , it follows

BC

∫ ι̃(Q̃)

ι̃(P̃0)
π∗ωJ − Ab

∫ ι̃(Q̃)

ι̃(P̃0)
π∗ωJ

= BC

∫ ι̃(Q̃)

ι̃(P̃0)
π∗ωJ − Ab

∫ π(ι̃(Q̃))

π(ι̃(P̃0))
ωJ

= BC

∫ ι̃(Q̃)

0
π∗ωJ − Ab

∫ π(ι̃(Q̃))

0
ωJ

−

(
BC

∫ ι̃(P̃0)

0
π∗ωJ − Ab

∫ π(ι̃(P̃0))

0
ωJ

)
= (logBC− logAb) (ι̃(Q̃))(ωJ)

− (logBC− logAb) (ι̃(P̃0))(ωJ)

= (logBC− logAb) (ι̃(Q̃)− ι̃(P̃0))(ωJ)

= (logBC− logAb) (ι̃(Q̃))(ωJ)

6.3.2
= (L ◦ trop) (ι̃(Q̃))(ωJ)

= (L ◦ trop ◦ι̃) (Q̃)(ωJ)

6.3.5
=
(
L ◦ ι̃′ ◦ τ

)
(Q̃)(ωJ) = (∗)
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For a Cp-point on an open annulus, the retraction map is just the valuation map P 7−→
v(P ) if we choose an isomorphism

ζgo : A
∼−→ S(ρ)+.

The image v(P ) can again be identified with a point of the skeleton. The situation can
be described with a commutative diagram, where ζgo and ζreturn are isomorphisms.

Ã ⊆ X̃an Γ̃

S(ρ)+ (v(1), v(ρ))

ζgo

τ

v

ζreturn

(∗) =
(
L ◦ ι̃′ ◦ ζreturn ◦ v ◦ ζgo

)
(Q̃)(ωJ)

=
(
L ◦ ι̃′

) (
ζreturn ◦ v ◦ ζgo(Q̃)

)
(ωJ)

ι̃′ is affine-linear on ẽ, hence there exist c ∈ NR and a linear map ι̃′linear : Γ̃ −→ NR, such
that ι̃′(x) = ι̃′linear(x) + c.

= L
(
ι̃′linear

(
ζreturn ◦ v ◦ ζgo(Q̃)

)
+ c
)

(ωJ)

It exists an isomorphism ι∗ : Ω1
J/Cp −→ Ω1

X/Cp . Hence, for ω ∈ Ω1
X/Cp follows:

BC

∫ Q

P
ω − Ab

∫ Q

P
ω

= BC

∫ ι̃(Q̃)

ι̃(P̃ )
π∗ι∗ω − Ab

∫ ι̃(Q̃)

ι̃(P̃ )
π∗ι∗ω

= BC

∫ ι̃(Q̃)

ι̃(P̃0)
π∗ι∗ω − Ab

∫ ι̃(Q̃)

ι̃(P̃0)
π∗ι∗ω

−

(
BC

∫ ι̃(P̃ )

ι̃(P̃0)
π∗ι∗ω − Ab

∫ ι̃(P̃ )

ι̃(P̃0)
π∗ι∗ω

)
= L

(
ι̃′linear

(
ζreturn ◦ v ◦ ζgo(Q̃)

)
+ c
)

(ι∗ω)

− L
(
ι̃′linear

(
ζreturn ◦ v ◦ ζgo(P̃ )

)
+ c
)

(ι∗ω)

= L
(
ι̃′linear

(
ζreturn ◦ v ◦ ζgo(Q̃− P̃ )

))
(ι∗ω)

Under the isomorphism ζgo, the open annulus Ã will be identified with S(ρ)+. Therefore
P = ζgo(P̃ ) and Q = ζgo(Q̃).

=
(
L ◦ ι̃′linear ◦ ζreturn

)
(v(Q)− v(P ))(ι∗ω)
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As it was already identified Ã with S(ρ)+, it makes sense to identify (v(1), v(ρ)) with
ζreturn ((v(1), v(ρ))) ⊆ Γ̃, too. This permits quitting ζreturn.

=
(
L ◦ ι̃′linear

)
(v(Q)− v(P ))(ι∗ω)

Since L and ι̃′linear are both Q-linear, it follows

= (v(Q)− v(P )) ·
(
L ◦ ι̃′linear

)
(1)(ι∗ω)

with (L ◦ ι̃′linear) (1) ∈ Lie(J) = (Ω1
J/Cp)

∗. Note that ι̃′linear(1) is well-defined because

1 corresponds to a vertex adjacent to the retraction of Ã, where ι̃′linear is defined, too.
Furthermore L is defined at ι̃′linear(v(Q) − v(P )), since v(Q) − v(P ) ∈ Q and hence
ι̃′linear(v(Q)− v(P )) ∈ NQ. As ι∗ is an isomorphism,

a :=
((
L ◦ ι̃′linear

)
(1)
)
◦ ι∗

is a Cp-linear map Ω1
X/Cp −→ Cp. Continuing the calculation with these results gives:

= (v(Q)− v(P )) · a(ω)

Corollary 6.3.7. Let V be the subspace of Ω1
X/Cp consisting of all ω such that

BC

∫ Q

P
ω = Ab

∫ Q

P
ω

for all P,Q ∈ A(Cp), where A is an open annulus. Then V has codimension at most
one.

Proof. It holds V = ker(a), where a is the Cp-linear map a : Ω1
X/Cp −→ Cp of Theorem

6.3.6. One may consider Ω1
X/Cp and Cp as Cp-vector spaces.

Then, by the rank-nullity theorem, it holds

dimCp(Ω
1
X/Cp) = dimCp(ker(a)) + dimCp(Im(a)).

Hence

dimCp(V ) = dimCp(ker(a))

= dimCp(Ω
1
X/Cp)− dimCp(Im(a))

and

codimCp(V ) = dimCp(Im(a)) ≤ 1

as Im(a) ⊆ Cp.
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Remark 6.3.8. This result is an important ingredient in the proof of a theorem of
Michael Stoll (Theorem 9.1, [Sto13]), which uniformely bounds the number of Q-rational
points on a smooth hyperelliptic curve of genus g with Mordell-Weil rank rankZ(J(Q)) ≤
g − 3.
Furthermore it is a very important tool in the proof of Theorem 2.14, [KRZ16a]. There
Eric Katz, Joseph Rabinoff and David Zureick-Brown could overcome the hyperelliptic
restriction in Theorem 9.1, [Sto13] and formulate uniform bounds of the number of
Q-rational points for arbitrary smooth curves X of genus g with Mordell-Weil rank
rankZ(J(Q)) ≤ g − 3. The statement in Theorem 2.14, [KRZ16a] is

#X(Q) ≤ 84g2 − 98g + 28.
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